研究生: |
鄧善友 Teng, Shan-You |
---|---|
論文名稱: |
相對論性電子束驅動之太赫茲聚頻磁鐵超輻射源物理機制分析 Analysis of a Relativistic-Electron-Beam-Driven Superradiant Terahertz Undulator Radiation Source |
指導教授: |
劉偉強
Lau, Wai-Keung 張存續 Chang, Tsun-Hsu |
口試委員: |
陳仕宏
Chen, Shin-Hung 李安平 Lee, An-Ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 超輻射 、聚頻磁鐵輻射 、太赫茲光源 、自由電子雷射 |
外文關鍵詞: | super-radiance, undulator-radiation, Tera-Hertz, Free-electron-laser |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以加速器為基底的太赫茲光源能夠用於許多半導體元件材料分析以及物質非線性光譜研究中。在將加速後的電子束團壓縮至小於所預計產生的輻射波長後,我們便能將電子束打入聚頻磁鐵產生MW等級的可調聚頻磁鐵超輻射光源,利用此方法,我們能夠使用數十個MeV、束流長度為次微米範圍的電子產生太赫茲超輻射,然而在電子壓縮的過程中,電子的能散會不可避免地存在於系統中使得輻射強度下降。本論文透過撰寫一個三維聚頻磁鐵輻射程式來描述電子在聚頻磁鐵內的動力學以及輻射場,利用龍格-庫塔法追蹤電子在聚頻磁鐵內的運動,從黎納-維謝勢計算電子所產生的輻射,透過程式我們能夠探討不同條件的電子對於整體輻射所造成的效應,包含電子束團大小、電子束流長度以及能散的改變,並且與我們在國家同步輻射中心自由電子雷射測試設施中,利用U100聚頻磁鐵產生太赫茲同調聚頻磁鐵輻射的實驗結果進行驗證。
Accelerator-based intense THz radiation sources are useful for studying nonlinear and non-equilibrium states of matter in their spectral range. Tunable THz superradiant radiation of MW-level peak power can be generated from relativistic short electron beams by passing them through gap-variable undulators provided that their bunch lengths are significantly shorter than the radiation wavelengths. A few tens MeV beam of sub-picosecond bunch length suitable for generation of superradiant THz undulator emissions can easily be achieved. However, during bunch compression, beam energy spread is unavoidably introduced into the system that may deteriorate coherent THz undulator radiations. In this study, we established a three-dimensional particle tracking algorithm to analyze the electron beam dynamics under the actions of undulator and external laser field. Electron motion in the system is tracked through 4th-order Runge-Kutta method. The radiation by the beam is calculated summing up radiations from all individual electrons. Radiation fields from individual electrons are calculated directly from Lienard-Weichert potential. Furthermore, the effects of beam properties such as beam size bunch length and the energy spread are also investigated. Simulation results are in good agreement with the observation in the THz coherent undulator radiation experiment which has been performed at National Synchrotron Radiation Research Center (NSRRC) photoinjector facility with U100 planar undulator as radiator.
[1] Saroj Rout, Sameer Sonkusale, (2017). Active Metamaterials Terahertz Modulators and Detectors.
[2] P. Ungelenk, M. Höner, H. Huck, S. Khan, C. Mai, & A. Meyer auf der Heide. (2017). Continuously tunable narrowband pulses in the THz gap from laser-modulated electron bunches in a storage ring. PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 020706.
DOI: 10.1103/PhysRevAccelBeams.20.020706
[3] Van der Zande, W. J., Jongma, R. T., van der Meer, L., & Redlich, B. (2013). FELIX Facility: Free electron laser light sources from 0.2 to 75 THz. 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves.
[4] FELIX laboratory website. Retrieved from https://www.ru.nl/felix/ (June 30,
2021)
[5] W.K. Lau, et al., (2018). Intense THz radiation sources driven by the NSRRC high brightness photo-injector.
[6] P. J. Chou, (2018). Accelerator Physics: Introduction to particle accelerators
[7] J. D. Jackson, (1998). Classical Electrodynamics, 3rd edition. New York, America Wiley.
[8] Thompson, A.C. (2001). X-ray Data Booklet. University of California: Lawrence Berkeley National Laboratory.
[9] Kubsky, S. et al. (2004). Superconductive Mini-Gap Undulators — A New Way To High Energy Photons: Latest News. AIP Conference Proceedings. https://doi.org/10.1063/1.1757774
[10] M. S. Sherwin, C. A. Schmuttenmaer, & P. H. Bucksbaum, (2004). Opportunities in Thz science. Report of a DOE-NSF-NIH Workshop, Arlington, VA.
[11] R. Chulkov, V. A. Goryashko, V. Zhaunerchyk, (2014). Effects of emittance and energy spread in an electron bunch on THz radiation generated by a super-radiant source, report III of the series of reports by the Swedish FEL Center
[12] Z. Ma, Z. Wang, F. C. Fu, R. Wang, & D. Xiang. (2016). Generating quasi-single-cycle THz pulse from frequency-chirped electron bunch train and a tapered undulator. High Power Laser Science and Engineering, DOI: 10.1017/hpl.2015.35
[13] V. Joshi, S. Ghosh, (2019). Multiparticle time-domain analysis of coherent undulator radiation. Physical Review Accelerators and Beams 22, 020702.
DOI: 10.1103/PhysRevAccelBeams.22.020702
[14] L. H. Yu, J. H. Wu, (2002). Theory of high gain harmonic generation: an analytical estimate. Nuclear Instruments and Methods in Physics Research A 483 493–498
[15] V. A. Goryashko, (2017). Quasi-half-cycle pulses of light from a tapered undulator. PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 080703.
DOI: 10.1103/PhysRevAccelBeams.20.080703
[16] G. P. Williams, (2005). Filling the THz gap—high power sources and applications. Jefferson Lab, 12000 Jefferson Avenue, Newport News VA 23606, USA.