簡易檢索 / 詳目顯示

研究生: 邱于庭
Chou, Yu-Ting
論文名稱: 核醣-5-磷酸異構酶A在大腸直腸癌和肝細胞癌形成中的分子機制
The molecular mechanisms of ribose-5-phosphate isomerase A in the formation of colorectal cancer and hepatocellular carcinoma
指導教授: 喻秋華
Yuh, Chiou-Hwa
汪宏達
Wang, Horng-Dar
口試委員: 楊慕華
Yang, Muh-Hwa
姜正愷
Jiang, Jeng-Kai
吳肇卿
Wu, Jaw-Ching
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 165
中文關鍵詞: 核醣-5-磷酸異構酶A大腸直腸癌肝細胞癌β-連環蛋白胞外訊號調節激酶
外文關鍵詞: Ribose-5-phosphate isomerase A, colorectal cancer, hepatocellular carcinoma, β-catenin, extracellular signal-regulated kinase
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新陳代謝的改變是癌症的特徵之一。已知戊糖磷酸途徑中核糖-5-磷酸異構酶A的失調會促進肝,肺和結腸中的腫瘤發生,然而由核糖-5-磷酸異構酶A介導的腫瘤發生分子機制尚不清楚。我們的研究表明(1)核糖-5-磷酸異構酶A在大腸直腸癌中具有非典型功能(2)核糖-5-磷酸異構酶A同時透過β-連環蛋白和pERK信號傳遞誘導肝癌型成(3)核糖-5-磷酸異構酶A在不同癌症類型中其作用具有多樣性。
    首先,這些數據表明核糖-5-磷酸異構酶A在結腸癌中顯著升高,其透過在結腸癌細胞中活化β-連環蛋白進而調節細胞增生和促使癌症形成。不同於在細胞質中參與戊糖磷酸途徑的功能,在結腸癌細胞中核糖-5-磷酸異構酶A會進入細胞核並與APC和β-連環蛋白形成複合物。藉由這種保護機制能防止-連環蛋白被泛素化和降解。核糖-5-磷酸異構酶A的C端(胺基酸290至311)是誘導腫瘤發生所必需的重要位置。與體外結果一致,核糖-5-磷酸異構酶A增加β-連環蛋白及其下游基因的表達,隨後誘導轉基因魚中的腸道腫瘤生成。為了進一步研究核糖-5-磷酸異構酶A對於肝癌發生的影響,我們利用肝臟專一表達核糖-5-磷酸異構酶A的轉基因魚,發現具有脂肪堆積進而產生纖維化的現象,到了晚期,更發現有細胞增殖能力上升的趨勢。使用免疫組織化學分析,我們發現核糖-5-磷酸異構酶A過度表達會藉由ERK和β-連環蛋白信號傳導途徑造成肝臟癌化行成。我們注意到核糖-5-磷酸異構酶A可能通過不同的信號傳導調節腫瘤的發生,因此我們分析了十八種不同癌症中的核糖-5-磷酸異構酶A蛋白表現情形。綜合這些研究,我們認為核糖-5-磷酸異構酶A對於癌症的初始或惡化扮演重要角色,透過核糖-5-磷酸異構酶A標靶治療或許能成為一種治療癌症的替代策略。


    Altered metabolism is one of the hallmarks of cancers. Dysregulation of ribose-5-phosphate isomerase A (RPIA) in pentose phosphate pathway is known to promote tumorigenesis in prostate, liver and colon. However, the molecular mechanism of RPIA-mediated tumorigenesis is unknown. Our study demonstrates (1) RPIA has a non-canonical function in colorectal cancer (CRC) (2) RPIA induces hepatocellular carcinoma (HCC) through β-catenin and pERK signaling (3) RPIA plays divers role in different cancer types.
    First, these data indicate RPIA is significantly elevated in CRC. RPIA modulates cell proliferation and oncogenicity via activation of β-catenin in colon cancer cells. Unlike its role in pentose phosphate pathway (PPP) in which RPIA functions within the cytoplasm, RPIA enters the nucleus to form a complex with APC and β-catenin. This association protects β-catenin by preventing its proteolytic ubiquitination and degradation. The C-terminus of RPIA (AAs 290 to 311) is necessary for RPIA-mediated tumorigenesis. Consistent with results in vitro, RPIA increases the expression of β-catenin and its target genes, subsequent induces tumorigenesis in Tg(ifabp:RPIA;myl7:EGFP) zebrafish. To further investigate RPIA-mediated hepatocarcinogenesis, we found that RPIA overexpression induce steatosis followed by fibrosis. At a later stage, RPIA overexpression enhance the proliferative cells. Using immunohistochemistry analysis, we found RPIA overexpression leads to steatosis, fibrosis and HCC is through both the ERK and β-catenin signaling pathways. We noticed RPIA may regulate tumorigenesis by distinct signaling, hence we analyzed RPIA protein levels in eighteen different cancers. Together, we suggest RPIA may represent valuable targets for therapeutic agents in several cancers.

    Abstract I 中文摘要 II 致謝 III Content V Abbreviation List XIII Chapter 1. Introduction 1 Colorectal cancer 1 Hepatocellular carcinoma 2 Pentose phosphate pathway and cancer development 3 Ribose-5-phosphate isomerase A and cancer 4 RPIA in CRC 5 RPIA in HCC 5 Zebrafish as human disease models 6 Chapter 2. Materials and Methods 8 Ethics statement 8 Cell culture 8 Transfection and siRNA interference 8 Plasmid construction and transfection 9 Hematoxylin-eosin (HE) and IHC staining 9 Western blotting, fractionation, and Immunoprecipitation analysis 10 Colony formation assay 10 Reverse transcription and qPCR 11 Luciferase reporter assay 11 Immunofluorescence assay 11 Oil Red O staining 12 Sirius Red Staining 12 Transgenic zebrafish 13 Zebrafish husbandry 14 Chapter 3. Results 15 I. Identification of a non-canonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain 15 RPIA is highly expressed in different stages of human CRC tissue 15 RPIA levels are positively correlated with β-catenin protein levels, cellular proliferation, and oncogenicity 16 RPIA-mediated stabilization of β-catenin in colon cancer cells does not involve ERK signaling 18 RPIA forms a complex with β-catenin and APC in both the nucleus and cytoplasm 21 The C-terminal domain of RPIA is necessary for enhanced cell proliferation in colon cancer cells 22 RPIA promotes intestinal tumorigenesis in RPIA transgenic zebrafish in vivo 23 II. Ribose-5-Phosphate Isomerase A (RPIA) Overexpression Promotes Liver Cancer Development in Transgenic Zebrafish via activation of ERK and β-catenin pathways 25 RPIA-overexpression activates lipogenic factor/enzyme expression and causes liver steatosis 25 Effects of RPIA expression on liver fibrosis 26 RPIA mediated induction of cirrhosis is transaldolase independent 27 RPIA-mediated induction of PCNA and cell cycle/proliferation-related markers 28 ERK is activated between seven and eleven months of age in RPIA- transgenic fish 29 β-Catenin is activated in RPIA transgenic fish 29 Examination of histopathological changes in the livers of transgenic RPIA zebrafish by H&E staining 31 Appendix 32 RPIA is positive correlated with β-catenin in lung tissue 32 RPIA and β-catenin have similar expression pattern in prostate and thyroid tissue 32 RPIA has a negative correlation with β-catenin in pancreas tissue 34 β-Catenin expression levels are opposite of RPIA in cervix uteri and kidney tissue 35 Up-regulation of RPIA in cytoplasm and down-regulation of β-catenin in nucleus are observed in uterine cancer 36 RPIA is up-regulated in cancerous testicular tissue 36 β-Catenin is up-regulated in nucleus in skin cancer 37 RPIA is down-regulated in nucleus in brain cancer 38 β-Catenin is down-regulated in cancerous tissue of head and neck and soft tissue 38 Chapter 4. Discussion 40 I. Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain 40 II. Ribose-5-Phosphate Isomerase A (RPIA) Overexpression Promotes Liver Cancer Development in Transgenic Zebrafish via activation of ERK and β-catenin pathways 45 III. Variant roles of Ribose-5-Phosphate Isomerase A (RPIA) and β-catenin in different cancer types 48 Figures 51 Figure 1. RPIA is highly expressed in different stages of CRC 52 Figure 2. siRNA sequence of RPIA 54 Figure 3. RPIA levels are positively correlated with cellular proliferation. 56 Figure 4. RPIA levels are positively correlated with colony formation ability. 58 Figure 5. RPIA regulates colon cancer cell proliferation by modulating protein levels of β-catenin. 60 Figure 6. RPIA modulates β-catenin activity and target genes. 62 Figure 7. RPIA modulates β-catenin protein levels in both cytoplasm and nucleus. 64 Figure 8. ERK and EGFR signaling are not involved in the RPIA-mediated colon cancer tumorigenesis. 66 Figure 9. Transketolase (TKL) and Ribose-5-phosphate epimerase (RPE) are not up-regulated by RPIA expression. 68 Figure 10. RPIA expression is positive correlated with β-catenin protein levels in colon tissue or nucleus. 70 Figure 11. Knock down of RPIA decreases β-catenin protein stability in colon cancer cells. 72 Figure 12. RPIA increases β-catenin protein stability in colon cancer cells. 74 Figure 13. RPIA protects β-catenin from proteasomal degradation process. 76 Figure 14. GSK3β is involved in the RPIA-regulated β-catenin signaling. 78 Figure 15. RPIA localizes in the nucleus. 80 Figure 16. RPIA interacts with APC and β-catenin in colon cancer cells. 82 Figure 17. The RPIA amino acid sequence is highly conserved among human, mouse and zebrafish. 84 Figure 18. The mRNA expression level and protein expression pattern of RPIA and its deletion mutants. 86 Figure 19. The C-terminal domain of RPIA containing amino acids 290 to 311 is required for cell proliferation and β-catenin stabilization in colon cancer cells. 88 Figure 20. RPIA induce nuclear atypia, increased nuclear-to-cytoplasmic ratio and up-regulated β-catenin expression in intestinal bulb. 90 Figure 21. RPIA induce nuclear atypia, increased nuclear-to-cytoplasmic ratio and up-regulated β-catenin expression in middle intestine. 92 Figure 22. RPIA induce nuclear atypia, increased nuclear-to-cytoplasmic ratio and up-regulated β-catenin expression in posterior intestine. 94 Figure 23. RPIA promotes β-catenin target genes expression in vivo. 96 Figure 24. The body weight, body width, intestine length and body length in 1-year-old RPIA Tg fish. 98 Figure 25. Model of the RPIA mechanism for induction of β-catenin signaling in CRCs. 100 Figure 26. RPIA expression level has high correlation with HBV(+)-HCC tumor stage from I to III. 102 Figure 27. Lipogenic enzymes and factors are up-regulated in RPIA transgenic fish. 104 Figure 28. RPIA-transgenic fish develops steatosis as early as 3M and 5M RPIA transgenic fish. 106 Figure 29. RPIA transgenic fish develops fibrosis at five and seven months of age. 108 Figure 30. Transaldolase expression level is not affected by the over-expression of RPIA in transgenic zebrafish. 110 Figure 31. RPIA transgenic fish increases expression level of cell cycle markers and PCNA nuclear staining at 9 and 11 months of age. 112 Figure 32. pERK expression is elevated in RPIA transgenic fish aged 7 to 11 months. 114 Figure 33. The expression of β-catenin and downstream target genes were enhanced in rpia transgenic fish aged 7 to 11 months. 116 Figure 34. Knock down of RPIA in hepatoma cell lines results in a reduction of β-catenin protein expression. 118 Figure 35. RPIA transgenic zebrafish develops steatosis, hyperplasia, dysplasia, and HCC at earlier stages than control zebrafish. 120 Appendixes 121 Appendix 1. RPIA is positive correlated with β-catenin in lung. 121 Appendix 2. RPIA and β-catenin have similar expression pattern in prostate and thyroid. 123 Appendix 3. RPIA has a negative correlation with β-catenin in pancreas tissue. 124 Appendix 4. β-Catenin expression levels are opposite of RPIA in cervix uteri and kidney tissue. 126 Appendix 5. Up-regulation of RPIA and down-regulation of β-catenin are observed in uterine. 127 Appendix 6. RPIA is up-regulated in Testis tissue. 128 Appendix 7. β-Catenin is up-regulated in Skin nucleus. 129 Appendix 8. RPIA is down-regulated in Brain nucleus. 130 Appendix 9. β-Catenin is down-regulated in head and neck and soft tissue. 132 Appendix 10. RPIA and β-catenin have no significant difference between normal and tumor tissues in esophagus and stomach. 134 Appendix 11. RPIA and β-catenin have no significant difference between normal and tumor tissues in breast and ovary. 136 Appendix 12. RPIA and β-catenin have no significant difference between normal and tumor tissues in bladder and lymph node. 138 Tables 139 Table 1. Summary of RPIA and β-catenin expression patterns in different tumor biopsy compared with normal 139 Table 2. The primer information for qPCR analysis in human cancer cells 140 Table 3. The primer information for qPCR analysis in RPIA transgenic zebrafish 141 References 142 Publications 162 International Symposium Presentations 163 Honors & Awards 164

    Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997). beta-catenin is a target for the ubiquitin-proteasome pathway. The EMBO journal 16, 3797-3804.

    Aoki, K., and Taketo, M.M. (2007). Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. Journal of cell science 120, 3327-3335.

    Bechmann, L.P., Hannivoort, R.A., Gerken, G., Hotamisligil, G.S., Trauner, M., and Canbay, A. (2012). The interaction of hepatic lipid and glucose metabolism in liver diseases. Journal of hepatology 56, 952-964.

    Bhatia, N., and Spiegelman, V.S. (2005). Activation of Wnt/beta-catenin/Tcf signaling in mouse skin carcinogenesis. Molecular carcinogenesis 42, 213-221.

    Birchmeier, C., Birchmeier, W., Gherardi, E., and Vande Woude, G.F. (2003). Met, metastasis, motility and more. Nature reviews Molecular cell biology 4, 915-925.

    Boros, L.G., Lerner, M.R., Morgan, D.L., Taylor, S.L., Smith, B.J., Postier, R.G., and Brackett, D.J. (2005). [1,2-13C2]-D-glucose profiles of the serum, liver, pancreas, and DMBA-induced pancreatic tumors of rats. Pancreas 31, 337-343.
    Brabletz, T. (2012). To differentiate or not--routes towards metastasis. Nature reviews Cancer 12, 425-436.

    Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L.A., Knuechel, R., and Kirchner, T. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America 98, 10356-10361.

    Braeuning, A., Menzel, M., Kleinschnitz, E.M., Harada, N., Tamai, Y., Kohle, C., Buchmann, A., and Schwarz, M. (2007). Serum components and activated Ha-ras antagonize expression of perivenous marker genes stimulated by beta-catenin signaling in mouse hepatocytes. The FEBS journal 274, 4766-4777.

    Brekke, E.M., Morken, T.S., Wideroe, M., Haberg, A.K., Brubakk, A.M., and Sonnewald, U. (2014). The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic-ischemic brain injury. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 34, 724-734.

    Brembeck, F.H., Rosario, M., and Birchmeier, W. (2006). Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Current opinion in genetics & development 16, 51-59.

    Caldwell, S.H., Crespo, D.M., Kang, H.S., and Al-Osaimi, A.M. (2004). Obesity and hepatocellular carcinoma. Gastroenterology 127, S97-103.

    Cervenka, I., Wolf, J., Masek, J., Krejci, P., Wilcox, W.R., Kozubik, A., Schulte, G., Gutkind, J.S., and Bryja, V. (2011). Mitogen-activated protein kinases promote WNT/beta-catenin signaling via phosphorylation of LRP6. Molecular and cellular biology 31, 179-189.
    Cheasley, D., Pereira, L., Sampurno, S., Sieber, O., Jorissen, R., Xu, H., Germann, M., Yuqian, Y., Ramsay, R.G., and Malaterre, J. (2015). Defective Myb Function Ablates Cyclin E1 Expression and Perturbs Intestinal Carcinogenesis. Molecular cancer research: MCR 13, 1185-1196.

    Cheng, X.X., Sun, Y., Chen, X.Y., Zhang, K.L., Kong, Q.Y., Liu, J., and Li, H. (2004). Frequent translocalization of beta-catenin in gastric cancers and its relevance to tumor progression. Oncol Rep 11, 1201-1207.

    Cho, E.S., Cha, Y.H., Kim, H.S., Kim, N.H., and Yook, J.I. (2018). The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy. Biomolecules & therapeutics 26, 29-38.

    Chou, Y.T., Jiang, J.K., Yang, M.H., Lu, J.W., Lin, H.K., Wang, H.D., and Yuh, C.H. (2018). Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating beta-catenin via a novel C-terminal domain. PLoS biology 16, e2003714.

    Ciou, S.C., Chou, Y.T., Liu, Y.L., Nieh, Y.C., Lu, J.W., Huang, S.F., Chou, Y.T., Cheng, L.H., Lo, J.F., Chen, M.J., et al. (2015a). Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK signaling. Int J Cancer 137, 104-115.

    Ciou, S.C., Chou, Y.T., Liu, Y.L., Nieh, Y.C., Lu, J.W., Huang, S.F., Chou, Y.T., Cheng, L.H., Lo, J.F., Chen, M.J., et al. (2015b). Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK signaling. International journal of cancer Journal international du cancer 137, 104-115.

    Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789.

    Doglioni, C., Piccinin, S., Demontis, S., Cangi, M.G., Pecciarini, L., Chiarelli, C., Armellin, M., Vukosavljevic, T., Boiocchi, M., and Maestro, R. (2003). Alterations of beta-catenin pathway in non-melanoma skin tumors: loss of alpha-ABC nuclear reactivity correlates with the presence of beta-catenin gene mutation. The American journal of pathology 163, 2277-2287.

    Dutu, R., Nedelea, M., Veluda, G., and Burculet, V. (1980). Cytoenzymologic investigations on carcinomas of the cervix uteri. Acta cytologica 24, 160-166.

    Fadare, O., Reddy, H., Wang, J., Hileeto, D., Schwartz, P.E., and Zheng, W. (2005). E-Cadherin and beta-Catenin expression in early stage cervical carcinoma: a tissue microarray study of 147 cases. World journal of surgical oncology 3, 38.

    Fang, X., Yu, S.X., Lu, Y., Bast, R.C., Jr., Woodgett, J.R., and Mills, G.B. (2000). Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proceedings of the National Academy of Sciences of the United States of America 97, 11960-11965.

    Fedchenko, N., and Reifenrath, J. (2014). Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagnostic pathology 9, 221.

    Feitsma, H., and Cuppen, E. (2008). Zebrafish as a cancer model. Molecular cancer research: MCR 6, 685-694.
    Finkel, T. (2003). Oxidant signals and oxidative stress. Current opinion in cell biology 15, 247-254.

    Fleming, M., Ravula, S., Tatishchev, S.F., and Wang, H.L. (2012). Colorectal carcinoma: pathologic aspects. Journal of gastrointestinal oncology 3, 153-173.

    Francis, J.C., Thomsen, M.K., Taketo, M.M., and Swain, A. (2013). beta-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS genetics 9, e1003180.

    Gerdes, B., Ramaswamy, A., Simon, B., Pietsch, T., Bastian, D., Kersting, M., Moll, R., and Bartsch, D. (1999). Analysis of beta-catenin gene mutations in pancreatic tumors. Digestion 60, 544-548.

    Gougelet, A., and Colnot, S. (2012). A Complex Interplay between Wnt/beta-Catenin Signalling and the Cell Cycle in the Adult Liver. International journal of hepatology 2012, 816125.

    Hagland, H.R., and Soreide, K. (2015). Cellular metabolism in colorectal carcinogenesis: Influence of lifestyle, gut microbiome and metabolic pathways. Cancer letters 356, 273-280.

    Hamada, F., Murata, Y., Nishida, A., Fujita, F., Tomoyasu, Y., Nakamura, M., Toyoshima, K., Tabata, T., Ueno, N., and Akiyama, T. (1999). Identification and characterization of E-APC, a novel Drosophila homologue of the tumour suppressor APC. Genes Cells 4, 465-474.

    Hanczko, R., Fernandez, D.R., Doherty, E., Qian, Y., Vas, G., Niland, B., Telarico, T., Garba, A., Banerjee, S., Middleton, F.A., et al. (2009). Prevention of hepatocarcinogenesis and increased susceptibility to acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine. J Clin Invest 119, 1546-1557.

    Harada, N., Miyoshi, H., Murai, N., Oshima, H., Tamai, Y., Oshima, M., and Taketo, M.M. (2002). Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer research 62, 1971-1977.

    Harada, N., Oshima, H., Katoh, M., Tamai, Y., Oshima, M., and Taketo, M.M. (2004). Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer research 64, 48-54.

    Haramis, A.P., Hurlstone, A., van der Velden, Y., Begthel, H., van den Born, M., Offerhaus, G.J., and Clevers, H.C. (2006). Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia. EMBO reports 7, 444-449.

    Hayes-Lattin, B., and Nichols, C.R. (2009). Testicular cancer: a prototypic tumor of young adults. Seminars in oncology 36, 432-438.

    Heintze, J., Costa, J.R., Weber, M., and Ketteler, R. (2016). Ribose 5-phosphate isomerase inhibits LC3 processing and basal autophagy. Cellular signalling 28, 1380-1388.

    Henderson, B.R. (2000). Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nature cell biology 2, 653-660.
    Henderson, B.R., and Fagotto, F. (2002). The ins and outs of APC and beta-catenin nuclear transport. EMBO reports 3, 834-839.

    Herbst, A., Jurinovic, V., Krebs, S., Thieme, S.E., Blum, H., Goke, B., and Kolligs, F.T. (2014). Comprehensive analysis of beta-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling. BMC Genomics 15, 74.

    Hu, T., Li, Y.S., Chen, B., Chang, Y.F., Liu, G.C., Hong, Y., Chen, H.L., and Xiyang, Y.B. (2015). Elevated glucose-6-phosphate dehydrogenase expression in the cervical cancer cases is associated with the cancerigenic event of high-risk human papillomaviruses. Experimental biology and medicine 240, 1287-1297.

    Ilyas, M., Tomlinson, I.P., Rowan, A., Pignatelli, M., and Bodmer, W.F. (1997). Beta-catenin mutations in cell lines established from human colorectal cancers. Proceedings of the National Academy of Sciences of the United States of America 94, 10330-10334.

    Ji, H., Wang, J., Nika, H., Hawke, D., Keezer, S., Ge, Q., Fang, B., Fang, X., Fang, D., Litchfield, D.W., et al. (2009). EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Molecular cell 36, 547-559.

    Jiang, P., Du, W., and Wu, M. (2014). Regulation of the pentose phosphate pathway in cancer. Protein & cell 5, 592-602.
    Jin, J., Zhan, P., Katoh, M., Kobayashi, S.S., Phan, K., Qian, H., Li, H., Wang, X., Wang, X., Song, Y., et al. (2017). Prognostic significance of beta-catenin expression in patients with non-small cell lung cancer: a meta-analysis. Translational lung cancer research 6, 97-108.

    Jonas, S.K., Benedetto, C., Flatman, A., Hammond, R.H., Micheletti, L., Riley, C., Riley, P.A., Spargo, D.J., Zonca, M., and Slater, T.F. (1992). Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia. British journal of cancer 66, 185-191.

    Junttila, M.R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., Ala-aho, R., Nielsen, C., Ivaska, J., Taya, Y., et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell 130, 51-62.

    Kellum, R., and Elgin, S.C. (1998). Chromatin boundaries: punctuating the genome. Curr Biol 8, R521-R524.

    Kim, Y., Kim, E.Y., Seo, Y.M., Yoon, T.K., Lee, W.S., and Lee, K.A. (2012). Function of the pentose phosphate pathway and its key enzyme, transketolase, in the regulation of the meiotic cell cycle in oocytes. Clinical and experimental reproductive medicine 39, 58-67.

    Kim, Y.S., Kang, Y.K., Kim, J.B., Han, S.A., Kim, K.I., and Paik, S.R. (2000). beta-catenin expression and mutational analysis in renal cell carcinomas. Pathology international 50, 725-730.

    Kishida, S., Yamamoto, H., Ikeda, S., Kishida, M., Sakamoto, I., Koyama, S., and Kikuchi, A. (1998). Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J Biol Chem 273, 10823-10826.

    Kohler, E.M., Chandra, S.H., Behrens, J., and Schneikert, J. (2009). Beta-catenin degradation mediated by the CID domain of APC provides a model for the selection of APC mutations in colorectal, desmoid and duodenal tumours. Human molecular genetics 18, 213-226.

    Korinek, V., Barker, N., Morin, P.J., van Wichen, D., de Weger, R., Kinzler, K.W., Vogelstein, B., and Clevers, H. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784-1787.

    Kowalik, M.A., Columbano, A., and Perra, A. (2017). Emerging Role of the Pentose Phosphate Pathway in Hepatocellular Carcinoma. Front Oncol 7, 87.

    Langbein, S., Zerilli, M., Zur Hausen, A., Staiger, W., Rensch-Boschert, K., Lukan, N., Popa, J., Ternullo, M.P., Steidler, A., Weiss, C., et al. (2006). Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 94, 578-585.

    Lee, H.J., Lan, L., Peng, G., Chang, W.C., Hsu, M.C., Wang, Y.N., Cheng, C.C., Wei, L., Nakajima, S., Chang, S.S., et al. (2015). Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response. Cell research 25, 225-236.

    Lieschke, G.J., and Currie, P.D. (2007). Animal models of human disease: zebrafish swim into view. Nature reviews Genetics 8, 353-367.

    Lu, J.W., Yang, W.Y., Lin, Y.M., Jin, S.L., and Yuh, C.H. (2013a). Hepatitis B virus X antigen and aflatoxin B1 synergistically cause hepatitis, steatosis and liver hyperplasia in transgenic zebrafish. Acta histochemica 115, 728-739.

    Lu, J.W., Yang, W.Y., Tsai, S.M., Lin, Y.M., Chang, P.H., Chen, J.R., Wang, H.D., Wu, J.L., Jin, S.L., and Yuh, C.H. (2013b). Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PloS one 8, e76951.

    Lu, Y., Xu, Y.Y., Fan, K.Y., and Shen, Z.H. (2006). 1-Deoxymannojirimycin, the alpha1,2-mannosidase inhibitor, induced cellular endoplasmic reticulum stress in human hepatocarcinoma cell 7721. Biochemical and biophysical research communications 344, 221-225.

    Lucarelli, G., Galleggiante, V., Rutigliano, M., Sanguedolce, F., Cagiano, S., Bufo, P., Lastilla, G., Maiorano, E., Ribatti, D., Giglio, A., et al. (2015). Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget 6, 13371-13386.

    MacDonald, B.T., Tamai, K., and He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17, 9-26.

    Marchesi, J.R., Dutilh, B.E., Hall, N., Peters, W.H., Roelofs, R., Boleij, A., and Tjalsma, H. (2011). Towards the human colorectal cancer microbiome. PloS one 6, e20447.

    Maruyama, K., Ochiai, A., Akimoto, S., Nakamura, S., Baba, S., Moriya, Y., and Hirohashi, S. (2000). Cytoplasmic beta-catenin accumulation as a predictor of hematogenous metastasis in human colorectal cancer. Oncology 59, 302-309.

    McGuire, S. (2016). World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr 7, 418-419.

    Moon, R.T., Kohn, A.D., De Ferrari, G.V., and Kaykas, A. (2004). WNT and beta-catenin signalling: diseases and therapies. Nature reviews Genetics 5, 691-701.

    Morin, P.J. (1999). beta-catenin signaling and cancer. BioEssays : news and reviews in molecular, cellular and developmental biology 21, 1021-1030.

    Mudbhary, R., Hoshida, Y., Chernyavskaya, Y., Jacob, V., Villanueva, A., Fiel, M.I., Chen, X., Kojima, K., Thung, S., Bronson, R.T., et al. (2014). UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer cell 25, 196-209.

    Mugoni, V., Camporeale, A., and Santoro, M.M. (2014). Analysis of oxidative stress in zebrafish embryos. J Vis Exp.

    Obajimi, O., and Melera, P.W. (2008). The depletion of cellular ATP by AG2034 mediates cell death or cytostasis in a hypoxanthine-dependent manner in human prostate cancer cells. Cancer chemotherapy and pharmacology 62, 215-226.

    Odenwald, M.A., Prosperi, J.R., and Goss, K.H. (2013). APC/beta-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology. BMC cancer 13, 12.

    Patra, K.C., and Hay, N. (2014). The pentose phosphate pathway and cancer. Trends in biochemical sciences 39, 347-354.

    Pawelec, G., and Solana, R. (2008). Are cancer and ageing different sides of the same coin? Conference on Cancer and Ageing. EMBO Rep 9, 234-238.

    Perl, A., Hanczko, R., Telarico, T., Oaks, Z., and Landas, S. (2011). Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol Med 17, 395-403.

    Powell, S.M., Zilz, N., Beazer-Barclay, Y., Bryan, T.M., Hamilton, S.R., Thibodeau, S.N., Vogelstein, B., and Kinzler, K.W. (1992). APC mutations occur early during colorectal tumorigenesis. Nature 359, 235-237.

    Purdue, M.P., Devesa, S.S., Sigurdson, A.J., and McGlynn, K.A. (2005). International patterns and trends in testis cancer incidence. International journal of cancer 115, 822-827.

    Qiu, Z., Guo, W., Wang, Q., Chen, Z., Huang, S., Zhao, F., Yao, M., Zhao, Y., and He, X. (2015). MicroRNA-124 reduces the pentose phosphate pathway and proliferation by targeting PRPS1 and RPIA mRNAs in human colorectal cancer cells. Gastroenterology 149, 1587-1598 e1511.

    Rao, R.K., and Clayton, L.W. (2002). Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation. Biochem Biophys Res Commun 293, 610-616.

    Rohrs, S., Kutzner, N., Vlad, A., Grunwald, T., Ziegler, S., and Muller, O. (2009). Chronological expression of Wnt target genes Ccnd1, Myc, Cdkn1a, Tfrc, Plf1 and Ramp3. Cell Biol Int 33, 501-508.

    Rosin-Arbesfeld, R., Townsley, F., and Bienz, M. (2000). The APC tumour suppressor has a nuclear export function. Nature 406, 1009-1012.

    Sastre-Perona, A., and Santisteban, P. (2012). Role of the wnt pathway in thyroid cancer. Frontiers in endocrinology 3, 31.

    Schmidt, C.M., McKillop, I.H., Cahill, P.A., and Sitzmann, J.V. (1997). Increased MAPK expression and activity in primary human hepatocellular carcinoma. Biochem Biophys Res Commun 236, 54-58.

    Scudellari, M. (2014). Drug development: try and try again. Nature 516, S4-6.

    Seyfried, T.N., and Shelton, L.M. (2015). Cancer as a mitochondrial metabolic disease. Front Cell Dev Biol 3, 43.

    Siegel, R., Ma, J., Zou, Z., and Jemal, A. (2014). Cancer statistics, 2014. CA: a cancer journal for clinicians 64, 9-29.

    Stamos, J.L., and Weis, W.I. (2013). The beta-catenin destruction complex. Cold Spring Harb Perspect Biol 5, a007898.

    Sun, Y., Gu, X., Zhang, E., Park, M.A., Pereira, A.M., Wang, S., Morrison, T., Li, C., Blenis, J., Gerbaudo, V.H., et al. (2014). Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells. Cell death & disease 5, e1231.

    Tan, X., Apte, U., Micsenyi, A., Kotsagrelos, E., Luo, J.H., Ranganathan, S., Monga, D.K., Bell, A., Michalopoulos, G.K., and Monga, S.P. (2005). Epidermal growth factor receptor: a novel target of the Wnt/beta-catenin pathway in liver. Gastroenterology 129, 285-302.

    Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature reviews Cancer 2, 442-454.

    Tian, Y., Xu, T., Huang, J., Zhang, L., Xu, S., Xiong, B., Wang, Y., and Tang, H. (2016). Tissue metabonomic phenotyping for diagnosis and prognosis of human colorectal cancer. Sci Rep 6, 20790.

    Timme-Laragy, A.R., Goldstone, J.V., Imhoff, B.R., Stegeman, J.J., Hahn, M.E., and Hansen, J.M. (2013). Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo. Free Radic Biol Med 65, 89-101.

    Tsujio, I., Tanaka, T., Kudo, T., Nishikawa, T., Shinozaki, K., Grundke-Iqbal, I., Iqbal, K., and Takeda, M. (2000). Inactivation of glycogen synthase kinase-3 by protein kinase C delta: implications for regulation of tau phosphorylation. FEBS letters 469, 111-117.

    Ueta, T., Ikeguchi, M., Hirooka, Y., Kaibara, N., and Terada, T. (2002). Beta-catenin and cyclin D1 expression in human hepatocellular carcinoma. Oncol Rep 9, 1197-1203.

    Valvezan, A.J., Huang, J., Lengner, C.J., Pack, M., and Klein, P.S. (2014). Oncogenic mutations in adenomatous polyposis coli (Apc) activate mechanistic target of rapamycin complex 1 (mTORC1) in mice and zebrafish. Disease models & mechanisms 7, 63-71.

    van de Wetering, M., Sancho, E., Verweij, C., de Lau, W., Oving, I., Hurlstone, A., van der Horn, K., Batlle, E., Coudreuse, D., Haramis, A.P., et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241-250.

    Van Driel, B.E., Valet, G.K., Lyon, H., Hansen, U., Song, J.Y., and Van Noorden, C.J. (1999). Prognostic estimation of survival of colorectal cancer patients with the quantitative histochemical assay of G6PDH activity and the multiparameter classification program CLASSIF1. Cytometry 38, 176-183.

    van Es, J.H., Kirkpatrick, C., van de Wetering, M., Molenaar, M., Miles, A., Kuipers, J., Destree, O., Peifer, M., and Clevers, H. (1999). Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. Curr Biol 9, 105-108.

    Wang, C.T., Chen, Y.C., Wang, Y.Y., Huang, M.H., Yen, T.L., Li, H., Liang, C.J., Sang, T.K., Ciou, S.C., Yuh, C.H., et al. (2012). Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell 11, 93-103.

    White, B.D., Chien, A.J., and Dawson, D.W. (2012). Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology 142, 219-232.

    Wijnhoven, B.P., Dinjens, W.N., and Pignatelli, M. (2000). E-cadherin-catenin cell-cell adhesion complex and human cancer. The British journal of surgery 87, 992-1005.

    Wong, S.L., Mangu, P.B., Choti, M.A., Crocenzi, T.S., Dodd, G.D., 3rd, Dorfman, G.S., Eng, C., Fong, Y., Giusti, A.F., Lu, D., et al. (2010). American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 28, 493-508.

    Xiong, Y., and Kotake, Y. (2006). No exit strategy? No problem: APC inhibits beta-catenin inside the nucleus. Genes & development 20, 637-642.
    Xu, X., Zur Hausen, A., Coy, J.F., and Lochelt, M. (2009). Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer 124, 1330-1337.

    Yang, J., Zhang, W., Evans, P.M., Chen, X., He, X., and Liu, C. (2006). Adenomatous polyposis coli (APC) differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem 281, 17751-17757.

    Ying, H., Kimmelman, A.C., Lyssiotis, C.A., Hua, S., Chu, G.C., Fletcher-Sananikone, E., Locasale, J.W., Son, J., Zhang, H., Coloff, J.L., et al. (2012). Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670.

    Yoshida, N., Kinugasa, T., Ohshima, K., Yuge, K., Ohchi, T., Fujino, S., Shiraiwa, S., Katagiri, M., and Akagi, Y. (2015). Analysis of Wnt and beta-catenin expression in advanced colorectal cancer. Anticancer research 35, 4403-4410.

    Zang, L., Shimada, Y., Nishimura, Y., Tanaka, T., and Nishimura, N. (2015). Repeated blood collection for blood tests in adult zebrafish. J Vis Exp, e53272.

    Zhang, C., Zhang, Z., Zhu, Y., and Qin, S. (2014). Glucose-6-phosphate dehydrogenase: a biomarker and potential therapeutic target for cancer. Anti-cancer agents in medicinal chemistry 14, 280-289.

    Zhang, S., Yang, J.H., Guo, C.K., and Cai, P.C. (2007). Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Cancer Lett 253, 108-114.

    QR CODE