簡易檢索 / 詳目顯示

研究生: 蔡長嵐
Chang-Lan Tsai
論文名稱: 非線性時變隨機系統之切換性模糊濾波器設計
Switching Fuzzy Filter Design for Nonlinear Time-Varying Stochastic Systems
指導教授: 陳博現
Bor-Sen Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 75
中文關鍵詞: 非線性系統時變系統H∞濾波器
外文關鍵詞: nonlinear system, time-varying system, H∞ filter
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 切換性多模組的方法已廣泛應用於線性時變系統的估測,最佳的估測法因為計算量隨時間成指數增加,所已有很多簡化,但效能仍不錯的估測器提出。應用範圍如飛行器追蹤、手機定位等。
    對於線性系統中存有時變的參數,第二章提出以設定若干個子系統,以代表此切換系統的時變性。類似於前一章的方法,可對每一子系統設計一濾波器,並由每一子系統的相似度值為權重,合併起來為最後的估測值。應用的範圍如時變autoregressive model的估測。
    Takagi-Sugeno模糊模型用來近似非線性系統,而濾波器亦可基於建立的模糊模型來做設計。但較少論文有關非系性時變系統的探討。對於時變的非線性系統,首先定義數個子系統,然後對個別子系統建立一模糊模型。基於此對於此模糊模型,可設計一模糊濾波器。最後,由每一子系統的相似度值為權重,合併起來為最後的估測值。
    結合可切換性多模組與Takagi-Sugeno模糊模型這兩種方式,本文提出一個可切換性的模糊濾波器來估測系統狀態。為達到抑制雜訊及準確估測的效果,可切換性的模糊濾波器的設計要同時滿足H2及H∞準則,即在限制住雜訊對估測誤差的放大效應下,要設計濾波器使估測誤差最小。設計的限制條件可以轉成線性矩陣不等式(LMI),並藉由一些最佳化方法,可以設計出濾波器。
    最後,用電腦程式模擬來跟切換性extended Kalman filter (EKF)做比較。結果顯示,當存在不明干擾的情形下,H2/H∞準則所設計的濾波器有較大的強健性。第一個非線性時變系統的近似誤差比較小,但有不明的雜訊,所以,本文提出的切換性模糊H2/H∞濾波器跟switching extended Kalman filter比較起來,有較好的強健性。第二個非線性時變系統的近似誤差比較大,且有不明的雜訊,所以,switching extended Kalman filter的準確度大為降低,而,本文提出的切換性模糊H2/H∞濾波器仍具有較好的強健性。


    The problem of state estimation for nonlinear stochastic systems subject to time-varying parameter or time-varying structure is considered. Switching multiple-modeling approach has been used to deal with linear systems with time-varying parameters or structures. On the other hand, Takagi-Sugeno (T-S) fuzzy modeling method is usually adopted to approximate the nonlinear time-invariant systems, but not suitable for nonlinear time-varying systems. Combining the switching multiple-modeling approach and T-S fuzzy modeling method, a fuzzy filter, realized using switching T-S fuzzy model, is proposed for the state estimation of the nonlinear time-varying stochastic systems. In order to mitigate the model approximation error and external disturbance in the systems, the proposed H2/H∞ switching fuzzy filter minimizes the upper bound of the H2-norm of estimation error system under the constraint that the H∞-norm (i.e., the worst-case effect of disturbance on estimation error) is less than a prescribed value. The conditions for the existence of such robust filter are provided in terms of linear matrix inequalities (LMIs), allowing the use of standard convex optimization procedures to solve the proposed H2/H∞ filtering problem for nonlinear time-varying systems. Finally, numerical simulations are provided to illustrate the design procedure and to confirm the performance of the proposed robust filter.

    摘要 Abstract ................................................. i Acknowledgements ........................................ ii Contents ............................................... iii 1 Introduction ........................................... 1 2 Switching Linear systems ............................... 7 2.1 Markovian Jump Linear System ........................ 7 2.2 Systems withNonstationary Noise .................... 10 2.3 SignalReconstruction for Time-Varying Filter Bank .. 12 3 Linear Systems with Uncertain Time-Varying Parameters14 3.1 Switching Filter ................................... 15 3.2 Channel Estimation for Time-Varying Fading Channel.. 17 3.3 Estimation Error System ............................ 19 3.4 Stability Analysis ................................. 20 3.5 H2 Filtering ....................................... 23 3.6 H∞ Filtering ...................................... 25 4 Multiple Fuzzy Modeling of Nonlinear Stochastic Systems ............................................ 30 4.1 Takagi-Sugeno Fuzzy Model of Nonlinear Stochastic System ............................................. 31 4.2 Takagi-Sugeno Fuzzy Model of Nonlinear Time-Varying Systems ............................................ 33 5 The Mixed H2/H∞ Switching Fuzzy Filter Design ..... 37 5.1 Estimation Error System ............................ 38 5.2 Stability Analysis under Noise Free Case ........... 40 5.3 The H∞ Switching Fuzzy FilterDesign ............... 42 5.4 The H2/H∞ Switching FuzzyMixed FilterDesign ....... 50 6 Simulations ........................................ 56 7 Conclusions ........................................ 68 Bibliography ............................................ 69

    [1] A. G. Jaffer and S. C. Gupta, “Optimal sequential estimation of discrete processes with Markov interrupted observations,” IEEE Trans. Automat. Contr., vol. 16, no. 5, pp. 471-475, Oct. 1971.
    [2) G. A. Ackerson and K. S. Fu, “On state estimation in switching environments,” IEEE Trans. Automat. Contr., vol. 15, no. 1, pp. 10-17, Feb. 1970.
    [3] J. K. Tugnait, “Adaptive estimation and identification for discrete-time systems with Markov jump parameters,” IEEE Trans. Automat. Contr., vol. 27, no. 5, pp. 1054-1065, Oct. 1982.
    [4] J. K. Tugnait, “Detection and estimation for abruptly changing systems,” Automatica, vol. 18, no. 5, pp. 607-615, 1982.
    [5] O. L. Costa, “Linear minimum mean square error estimation for discrete-time Markovian jump linear systems,” IEEE Trans. Automat. Contr., vol. 39, no. 8, pp. 1685-1689, Aug. 1994.
    [6] H. A. P. Blom and Y. Bar-Shalon, “The interacting multiple model algorithm for systems with Markovian switching coefficients,” IEEE Trans. Automat. Contr., vol. 33, no. 8, pp. 780-783, Aug. 1988.
    [7] E. Mazor, A. Averbuch and Y. Bar-Shalom, “Interacting multiple model methods in target tracking: A survey,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 1, pp. 103-123, Jan. 1998.
    [8] X. R. Li and Y. Bar-Shalom, “A recursive multiple model approach to noise identification,” IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 3, pp. 671-684, July 1994.
    [9] B.-S. Chen and J.-F. Liao, “Robust mobile allocation estimator with NLOS mitigation using interacting multiple model,” submitted to IEEE Trans. Wireless Commun., 2004.
    [10] M. H. Jaward and V. Kadirkamanathan, “Interacting multiple models for single-user channel estimation and equalization,” Proc. IEEE Intern. Conf. Acoust., Speech, Signal Processing, ICASSP, vol. 4, pp. 2101-2104, 2001.
    [11] M. H. Jaward and V. Kadirkamanathan, “Interacting multiple model for adaptive narrowband interference rejection in spread spectrum systems,” Proc. IEEE Intern. Symp. Personal, Indoor, Mobile Radio Commun., PIMRC, vol. 3, pp. 1275-1279, 2002.
    [12] M. H. Jaward and V. Kadirkamanathan, “Adaptive multiuser detection for frequency selective channel using IMM,” Proc. IEEE Intern. Symp. Personal, Indoor, Mobile Radio Commun., PIMRC, vol. 3, pp. 1275-1279, 2002.
    [13] J.-F. Liao, C.-L. Tsai, and B.-S. Chen, “Robust adaptive channel estimation and multiuser detection for ultra wideband in a realistic indoor channel,” Proc. Intern. Conf. Commun., 2005.
    [14] Z. M. Kamram, T. Kirubarajan, and A. B. Gershman, “Blind estimation and equalization of time-varying channels using the interacting multiple model estimator,” Proc. IEEE Intern. Symp. Circuits and Systems, ISCAS, vol. 5, pp. 17-20, 2004.
    [15] L. Sodagar, K. Nayebi, and T. P. Barnwell, “Time-varying filter banks and wavelets,” IEEE Trans. Signal Processing, vol. 42, no. 11, pp. 2983-2996, Nov. 1994.
    [16] C.-L. Tsai and B.-S. Chen, “Time-varying filter bank design under noisy channel,” Master thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., 1996.
    [17] C. E. de Souza and M. D. Fragoso, “H∞ filtering for Markovian jump linear systems,” Proc. IEEE Conf. Decision & Contr., vol. 4, pp. 4814-4818, 1996.
    [18] C. E. de Souza, “A mode-independent H∞ filter design for discrete-time Markovian jump linear systems,” Proc. IEEE Conf. Decision & Contr., vol. 3, pp. 2811-2816, 2003.
    [19] C.-L. Tsai and B.-S. Chen, “Robust mixed H2/H∞ estimation for jump stochastic systems and its applications,'' submitted to IEEE Trans. Signal Processing, 2005.
    [20] K. A. Barbosa and C. E. de Souza, “Robust H2 filtering for discrete-time uncertain linear systems using parameter-dependent Lyapunov functions,” Proc. American Contr. Conf. , vol. 4, pp. 3224-3229, 2002.
    [21] K. A. Barbosa, A. Trofino, and C. E. de Souza, “Robust H∞ filtering for linear discrete-time state-space models with uncertain time-varying parameters,” Proc. IEEE Intern. Conf. Acoust., Speech, Signal Processing, ICASSP, vol. 2, pp. 1389-1392, 2002.
    [22] J. C. Geromel, J. Bernussou, G. Garcia and M. C. E. de Oliveira, “H2 and H∞ robust filtering for discrete-time linear systems,” SIAM Journ. Contr. Optim., vol. 38, no. 5, pp. 1353-1368, 2000.
    [23] M. R. James and I. R. Peterson, “Nonlinear state estimation for uncertain systems with an integral constraint,” IEEE Trans. Signal Processing, vol. 46, pp. 2926-2937, Aug. 1998.
    [24] T.Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. System, Man, Cybern., vol. 15, pp. 116-132, 1985.
    [25] E. Kim, S. Ji and M. Park, “A new approach to fuzzy modeling,” IEEE Trans. Fuzzy Systems, vol. 5, no. 3, pp. 328-337, Aug. 1997.
    [26] C. C. Wang and C. C. Chen, “A clustering-based method for fuzzy modeling,” IEICE Trans. Inf. & Syst., vol. E82-D, no. 6, pp. 1058-1065, 1999.
    [27] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modeling,” IEEE Trans. Fuzzy Systems, vol. 1, no. 1, pp. 7-31, Feb. 1993.
    [28] C.-S. Tseng, and B.-S. Chen, “H∞ fuzzy estimation for a class of nonlinear discrete-time dynamic systems,” IEEE Trans. Signal Processing, vol. 49, no. 11, pp. 2605-2619, Nov. 2001.
    [29] X. Shen and L. Deng, “A dynamic system approach to speech enhancement using the H∞ filtering algorithm,” IEEE Trans. Speech & Audio Processing, vol. 7, no. 4, pp. 391-399, Jul. 1999.
    [30] N. Berman and U. Shaked, “H∞ nonlinear filtering,” International Journal of Robust and Nonlinear Control, vol. 6, pp. 281-296, 1996.
    [31] J. B. Burl, “H∞ estimation for nonlinear systems,” IEEE Signal Processing Letts., vol. 5, no. 8, Aug. 1998.
    [32] L. Xie, C. E. de Souza, and Y. Wang, “Robust filtering for a class of discrete-time uncertain nonlinear systems: An H∞ approach,” Intern. J. Robust & Nonlinear Contr., vol. 6, pp. 297-312, 1996.
    [33] B.-S. Chen, C.-L. Tsai and Y.-F. Chen, “Mixed H2/H∞ filtering design in multirate transmultiplexer systems: LMI approach,” IEEE Trans. Signal Processing, vol. 49, no. 11, pp. 2693-2701, Nov. 2001.
    [34] B.-S. Chen, C.-L. Tsai and D.-S.\ Chen, “Robust H∞ and mixed H2/H∞ filters for equalization designs of nonlinear Communications systems: Fuzzy interpolation approach,” IEEE Trans. Fuzzy Systems, vol. 11, no. 3, pp. 384-398, June 2003.
    [35] S. K. Nguand and M. Fu, “Robust nonlinear H∞ filtering,” Automatica, vol. 32, no. 8, pp. 1195-1199, 1996.
    [36] Z. Tan, Y. C. Soh, and L. Xie, “Envelope-constrained H∞ filter design: An LMI optimization approach,” IEEE Trans. Signal Processing, vol. 48, no. 10, pp. 2960-2963, Oct. 2000.
    [37] L. Xie, L. Lu, D. Zhang, and H. Zhang, “H∞ deconvolution filtering of 2-d digital systems,” IEEE Trans. Signal Processing, vol. 50, no. 9, pp. 2319-2332, Sep. 2002.
    [38] H. Zhou, L. Xie, and C. Zhang, “A direct approach to H2 optimal deconvolution of periodic digital channels,” IEEE Trans. Signal Processing, vol. 50, no. 7, pp. 1685-1698, July 2002.
    [39] R. T. Bambang, E. Shimemura and K. Uchida, “An algorithm for mixed H2/H∞ robust controllers that satisfy variance constraints,” IEEE Conf. Contr. Application, vol. 1, pp. 281-286, 1992.
    [40] P. P.\ Khargonekar and M. A. Rotea, “Mixed H2/H∞ control: a convex optimization approach,” IEEE Trans. Automat. Contr., vol. 36, no. 7, pp. 824-837, July 1991.
    [41] P. P. Khargonekar and M. A. Rotea, “Mixed H2/H∞ filtering,” Proc. IEEE Conf. Decision & Contr., vol. 2, pp. 2299-2304, 1992.
    [42] J. C. Geromel, P. L. D. Peres and S. R. Sonza, “Mixed H2/H∞ control for continuous-time linear systems,” Proc. IEEE Conf. Decision & Contr., vol. 4, pp. 3717-3722, 1992.
    [43] B.-S. Chen, C.-S. Tseng, and H.-J. Uang, “Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: An LMI approach,” IEEE Trans. Fuzzy Systems, vol. 8, no. 3, pp. 249-265, June 2000.
    [44] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control theory, SIAM, Philadelphia, 1994.
    [45] P. Gahinet, A. Nemiroski, A. J. Laub, and M. Chilali, LMI Control Toolbox, Natick, MA: Math Works, 1995.
    [46] S. Haykin, Adaptive Filter Theory, Englewood Cliffs, NJ: Prentice-Hall, 1996.
    [47] B.-S. Chen, C.-L. Tsai and C.-S. Hsu, “Robust adaptive MMSE/DFE multiuser detection in multipath fading channel with impulse noise,” IEEE Trans. Signal Processing, vol. 53, no. 1, pp. 306-317, Jan. 2005.
    [48] B.-S. Chen, B.-K. Lee and L.-B. Guo, “Optimal tracking design for stochastic fuzzy systems,” IEEE Trans. Fussy Systems, vol. 11, no. 6, pp. 796-813, Dec. 2003.
    [49] M. J. Grimble and A. E. Sayed, “Solution of the H∞ optimal linear filtering problem for discrete-time systems,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 1092-1104, July 1990.
    [50] J. Daafouz and J. Bernussou, Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties,” Systems & Control Letts., vol. 43, pp. 355-359, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE