簡易檢索 / 詳目顯示

研究生: 呂美君
Mei-chun Lu
論文名稱: 第一類區間設限資料之探討
指導教授: 張德新
Der-Shin Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 48
中文關鍵詞: 第一類區間設限資料現行狀況資料大樣本性質線性模式廣義加法模式比例勝算模式Cox PH 模式
外文關鍵詞: case 1 interval censored data, current status data, asympototically normal, linear model, generalized additive model, proportional odds model
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在許多臨床實驗中,無法確知病人的發病或死亡時間,只能知道病人發病或死亡時間在檢測時間之前或之後,記錄檢測時間及發病時間之指標,此類的資料即是所謂的第一類區間設限資料(case 1 interval censored data )。這篇論文便是對近年來有關第一類區間設限資料的文獻所提到在線性模式(linear model)及半參數模式下(semi-parametric model)估計參數的方法及其性質作一整理及探討。


    第一章 緒論...........................................................................................................................1 第二章 線性模式..................................................................................................................3 2.1 估計參數的方法..........................................................................................................4 2.2 大樣本性質.................................................................................................................11 2.3 模擬分析與比較.........................................................................................................16 2.4 推論...............................................................................................................................21 第三章 廣義加法模式.........................................................................................................25 3.1 廣義加法模式下參數之估計及大樣本質..............................................................28 3.2 Huang(1995)建立在比例勝算模式下參數之估計及大樣本性質.......................30 3.3 Rossini & Tsiatis(1996)建立在比例勝算模式下參數之估計及大樣本性質.......32 3.4 Huang(1996)建立在Cox PH 模式下參數之估計及大樣本性質............................34 3.5 Shibosiki(1998)論文之模擬分析與比較....................................................................37 第四章 例子............................................................................................................................41 4.1 腫瘤的發生....................................................................................................................41 4.2 HIV病毒的感染.............................................................................................................45 第五章 結論.............................................................................................................................46

    Abrevaya, J. (1999). Rank regression for current-statusdata:asymptotic nomality. Statistics & Probability Letters,43, 275-287.
    Aragón, J. and Quróz, A. J. (1995). Rank regressiom for current status data. Statistics & Probability Letters, 24, 251-256.
    Ayer, M., Brunk, H. D., Ewing, G.ó M., Reid, W. T. and Silverman, E. (1955). An empirical distribution funtion for sampling with incomplete observations. Ann. Math. Statist. 26, 641-647.
    Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data. Chapman and Hall:New York,New York.
    Diamond, I. D., McDonald, J. W. and Shan, I. H. (1986). Proportional hazards models for current status data:application to the study of differentials in age at weaning in Pakistan. Demography, 23, 607-620.
    Diamond, I. D.and McDonald, J. W. (1991). Analysis of current status data. In Demographic Applications of Event History Analysis (J. Trussell, R. Hankinson and J.Tiltin,eds.)231-252. Oxford Univ. Press.
    Finkelstein, D. M. and Wolfe, R. A. (1985). A semiparametric model for regression analysis of interval-censored failure time data. Biometrics, 41, 933-945.
    Finkelstein, D. M.(1986). A proportional hazards Model for interval-Censored Failure Time Data. Biometrics, 42, 845-854.
    Groeneboom, P.(1991). Nonparametric maximum likelihood estimators for interval censoring and deconvolution,Technical Report N.378, Department of Statistics, Stanford University,California.
    Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation (Birkhauser, Basel).
    Hasie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall:New York, New York.
    Hoel, D. G. and Walburg, H. E. (1972). Statistic analysis of survival experiments. Journal of the National Cancer Institute, 49, 361-372.
    Huang, J. (1995). Maximum likelihood estimation for proportional odds regression model with current status data. Analysis of Censored Data :/proceedings of the Workshop on Analysis of Censored Data, IMS Lecture Notes-Monograph Series, 27, pp129-145.
    Huang, J.(1996). Efficient estimation for the proportional hazards model with Interval censoring. The Annals of Statisticas, 24, no.2, 540-568.
    Jewell, N. P. and Shiboski, S. C. (1990). Statistic analysis of HIV infectivity based on partner studies. Biometrics, 46, 1133-1150.
    Keiding, N.(1991).Age-specific incidence and prevalence:a statistical perspective. Journal of the Royal Statistical Society A, 154, 371-412.
    Li, G. and Zhang, C. H. (1998). Linear regression with interval censored data. The Annals of Statistics, 26, no.4, 1306-1327.
    Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of American Statistic Associate, 84, 487-493.
    Rabinowitz, D. ,Tsiatis, A. and Aragon, J. (1995). Regression with interval- censored data. Biometika, 82, no.3, 501-513.
    Rossini, A. J. and Tsiatis, A A. (1996). A semiparametric proportional odds regression model for the analysis of current status data. Journal of the American Statistical Association, 91, no.434,713-721.
    Shen, X. , Shi, J. and Wong, W. H. (1999). Random sieve likelihood and general regression mode. Journal of American Statistic Associate, 94, 835-846.
    Shen, X. (2000). Linear regression with current status data. Journal of American Statistic Associate, 95, no.451, 842-852.
    Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation estimator. Econometrica, 61, 123-137.
    Shiboski, S. C. and Jewell, N. P. (1992). Statistic analysis of the time dependence of HIV infectivity based on partner study data. Journal of American Statistic Associate, 87, 360-372.
    Shiboski, S. C. (1998). Generalized additive models for current status data. Lifetime Data Analysis, 4, 29-50.
    van der Laan, M. J., Bickel, P. J. and Jewell, N. P. (1997). Single and doubly censored current status data:estimation,asymptotics and regression. The Scandinavian Journal of Statistics, 24, 289-307.
    van der Vaart, A. W., Murphy, S. A. and Wellner, J. A. (1999). Current status regression. Mathematical Methodes of Statistica, 8, no.3, 407-425.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE