簡易檢索 / 詳目顯示

研究生: 吳濬宏
Wu, Chung-Hung
論文名稱: GaSb Homojunction Photodetectors Using Zn Diffusion from Liquid Phase Source
利用液相鋅擴散源擴散製作銻化鎵同質接面光檢測器
指導教授: 吳孟奇
Wu, Meng-Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 60
中文關鍵詞: 銻化鎵光偵測器
外文關鍵詞: GaSb, Photodetector
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • GaSb-related materials play an important role on fiber communication and monitoring. The atmospheric pollutants and human blood glucose sensing are just to match the absorption range of GaSb-related ternary and quaternary materials. The 1.3 and 1.55 μm wavelength are the main wavelength of signals being used in communication because of lower power loss and scattering. The absorption spectral
    range of atmospheric pollutants is 2.3-4.3 μm, and it is totally matched to the spectrum of GaSb-related materials. The traditional blood glucose monitoring method is stabbing into human skin and measuring glucose level. If we can detect the reflection spectrum of the light from a light source illuminated through human blood, we can have a non-invasion method to monitoring blood glucose.
    We use photolithography and Zn diffusion to form a p-n junction. Use plasma enhanced chemical vapor deposition (PECVD), E-gun evaporator, reactive ion etching (RIE) and wet etching to find the best diffusion and processing onditions. This developed technology will be used for the future work to fabricate photodetectors by using the GaSb-related ternary and quaternary materials in the near- and mid- infrared wavelength range.
    We analyze the characteristics of our devices by using electrical and optical measurements. I-V curves can get cut-in voltage, series resistance, breakdown voltage, and ideality factor. C-V curves can get built-in potential, bulk concentration and diffused carrier concentration. The dark current can be lower than 3 μA at the reverse bias of -0.2 V and breakdown is -3.34 V at room temperature can be measured by electrical measurement. The absorption spectral range is below 1.7 μm, and the responsivity is 0.71 A/W on 1.15 μm.


    摘要......................................................I Abstract................................................ II 誌謝................................................... III Contents.................................................IV Chapter 1 Introduction 1.1 Introduction..........................................1 1.2 Research Motivation...................................2 Chapter 2 Related Theory of Photodetectors 2.1 Theory of Diffusion...................................4 2.1.1 Diffusion mechnism..................................4 2.1.2 Impurity diffusion..................................5 2.1.3 Diffusion theory....................................6 2.2 Theory of a p-n Junction..............................7 2.2.1 Zero-biased p-n junction............................7 2.2.2 Forward-biased p-n junction.........................9 2.2.3 Reverse-biased p-n junction........................12 2.3 Theory of Photodetectors.............................13 2.3.1 Photovotaic effect.................................13 2.3.2 Dark current of photodetectors.....................14 2.3.3 I-V characteristics of a diode illuminated by light15 2.3.4 Responsivity of photodetectors.....................16 Chapter 3 Experimental 3.1 Structure description................................26 3.2 Process steps........................................26 Chapter 4 Device Characteristics and Analyse 4.1 Device Measurements..................................34 4.1.1 Series resistance measurements.....................34 4.1.2 Ideality factor measurements.......................34 4.1.3 Built-in potential and concentration measurements..35 4.2 Characteristics of Photodetectors....................36 4.2.1 I-V characteristics................................36 4.2.2 C-V characteristics................................38 4.2.3 Responsivity.......................................39 4.2.4 Yield rate and uniformity..........................40 4.3 Summary..............................................40 Chapter 5 Conclusions and Future Works 5.1 Conclusions..........................................56 5.2 Future works.........................................56 Reference............................................... 57

    1. Z. Y. Liu, B. Hawkins, and T. F. Kuecha, “Chemical and structural characterization of GaSb (100) surfaces treated by HCl-based solutions and annealed in vacuum”, J. Vac. Sci. Technol. B, vol. 21, no. 1, pp. 71-77 (2002).
    2. Y. M. Sun, M. C. Wu, and Y. T. Ting, “Low concentration GaSb grown from Sb-rich solution by liquid phase epitaxy in the presence of erbium”, J. Cryst. Growth, vol. 158, pp. 449-454 (1996).
    3. J. P. Prineas, J. T. Olesberg, J. R. Yager, C. Cao, C. Coretsopoulos, and M. H. M. Reddy, “Cascaded active region in 2.4μm GaInAsSb light-emitting diodes for improved current efficiency”, Appl. Phys. Lett., vol 89, 211108 (2006).
    4. T. Schlegl, F. Dimroth, A. Ohm, and A.W. Bett, “TPV modules based on GaSb structures”, The 6th Thermophotovoltaic Generation of Electricity Conference,
    pp. 285-293 (2004).
    5. T. F. Refaat, M. N. Abedin, V. Bhagwat, I. B. Bhat, P. S. Dutta, and U. N. Singh, “InGaSb photodetectors using an InGaSb substrate for 2 mm applications”, Appl. Phys. Lett., vol 85, no. 11, pp. 1874-1876 (2004).
    6. J. E. Bowers, A. K. Srivastava, C. A. Burrus, J. C. Dewinter, M. A. Pollack, J. L. Zyskind, “ High-speed GaInAsSb/GaSb pin photodetectors for wavelength to 2.3μm”, Electron. Lett., vol. 22, no. 3, pp. 137-138 (1986).
    7. Y. H. Huang, C. C. Yang, T. C. Peng, F. Y. Cheng, M. C. Wu, Y. T. Tsai, C. L. Ho, I M. Liu, C. C. Hong, and C. C. Lin, “10-Gb/s InGaAs p-i-n photodiodes with wide spectral range and enhanced visible spectral response”, IEEE Photonics Tech. Lett., vol. 19, no. 5, pp. 339-341 (2007).
    8. A. Popov, V. V. Sherstnev, Y. P. Yakovlev, A. N. Baranov, and C. Alibert, “ Powerful mid-infrared light emitting diodes for pollution monitoring”, Electron. Lett., vol. 33, no. 1, pp. 86-88 (1997).
    9. B.L. Carter, E. Shaw, J.T. Olesberg, W.K. Chan, T.C. Hasenberg, and M.E. Flatté, “High detectivity InGaAsSb pin infrared photodetector for blood glucose sensing”, Electron. Lett., vol. 36, no. 15, pp. 1301-1303 (2000).
    10. J. P. Prineas, J.R. Yager, J. T. Olesberg, S. Seydmohamadi, C. Caoa, M. Reddy, C. Coretsopoulos, J. L. Hicks, T.F. Boggess, M. Santilli, and L.J. Olafsen, “Pin
    versus pn homojunctions in GaInAsSb 2.0-2.5 micron mesa photodiodes”, Proc. of SPIE, vol. 6119, 611903 (2006).
    11. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics. Wiley, 2007, pp. 350.
    12. S. P. Nicols (2002). Self- and Zinc Diffusion in Gallium Antimonide. U. C. Berkeley, USA. [Online]. Available: http://www.escholarship.org/uc/item/1nk2n1w3
    13. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI technology: Fundamentals, practice and modeling. Prentice Hall, 2000, pp. 377-279.
    14. C. C. Ling, S. Fung, and C. D. Beling, “Defect study of Zn-doped p-type gallium antimonide using positron lifetime spectroscopy”, Phys. Rev. B, vol. 64, 075201
    (2001).
    15. S. Dakshinamurthy, S. Shetty, I. Bhat, C. Hitchcock, R. Gutmann, G. Charache, and M. Freeman, “Fabrication and characterization of GaSb based thermophotovoltaic cells using Zn diffusion from a doped spin-on glass source”,
    J. Electron. Mater., vol. 28, no. 4, pp. 355-359 (1999).
    16. M. Hakala, M. J. Puska, and R. M. Nieminen, “Native defects and self-diffusion in GaSb”, J. Appl. Phys., vol. 91, no. 8, pp. 4988-4994 (2002).
    17. A.W. Bett, S. Keser, O.V. Sulima, “Study of Zn diffusion into GaSb from the vapour and liquid phase”, J. Crystal Growth, vol. 181, pp. 9-16 (1997).
    18. V. S. Sundaram and P. E. Gruenbaum, “Zinc diffusion in GaSb”, J. Appl. Phys., vol. 73, no. 8, pp. 3787-3789 (1992).
    19. F. Capasso, M. B. Panish, S. Sumski, and P. W. Foy, “Very high quantum efficiency GaSb mesa photodetectors between 1.3 and 1.6 μm”, Appl. Phys. Lett., vol. 36, no. 2 , pp. 165-167 (1980).
    20. S. Sridaran, A. Chavan, and P. S. Dutta, “Fabrication and passivation of GaSb photodiodes”, J. Crystal Growth, vol. 310, pp. 1590-1594 (2008).
    21. C. Heinz, “ Spin-on diffused GaSb mesa photodiode with high breakdown voltage”, Electron. Lett., vol. 22, no. 5, pp. 276-277 (1986).
    22. P. V. V. Jayaweera, S. G. Matsik, and A. G. U. Perera, “GaSb homojunctions for far-infrared (terahertz) detection”, Appl. Phys. Lett., vol. 90, 111109 (2007).
    23. E. V. Kunitsyna, I. A. Andreev, M. P. Mikhailova, Y. A. Parkhomenko, and Y. P. Yakovlev, “Fabrication details of GaInAsSb-based photodiode heterostructures”, Pro. of SPIE, vol. 4340, pp. 244-253 (2000).
    24. Y. M. Sun, W. J. Jiang, and M. C. Wu, “Optical property of GaSb alloys and photodiodes grown by liquid-phase epitaxy”, J. Appl. Phys., vol. 80, no. 3, pp.
    1731-1734 (1996).
    25. I. A. Andreev, E. V. Kunitsyna, M. P. Mikhailova, and Y. P. Yakovlev, “GaSb-based materials for mid-infrared photodiodes operating in the 0.9-2.55 μm spectral range”, Mat. Res. Soc. Symp. Proc., vol. 744, pp. M9.4.1-M9.4.6
    (2003).
    26. G. J. Conibeer, A. F. W. Willoughby, C. M. Hardingham, and V. K. M. Sharma, “Zinc diffusion in tellurium doped gallium antimonide”, J. Electron. Mater., vol. 25, no. 7, pp. 1108-1112 (1996).
    27. F. M. Mohammedy and M. J. Deen, “Growth and fabrication issues of GaSb-based detectors”, J. Mater. Sci. : Mater Electron, vol. 20, pp. 1039-1058 (2009).
    28. R. Grange, O. Ostinelli, M. Haiml, L. Krainer, G.J. Spühler, M. Ebnöther, E. Gini, S. Schön, and U. Keller, “Antimonide semiconductor saturable absorber for 1.5 μm”, Electron. Lett., vol. 40, no. 22, pp. 1414-1416 (2004).
    29. T. F. Refaat, M. N. Abedin, I. B. Bhat, P. S. Dutta, and U. N. Singh, “Characterization of InGaSb/GaSb p-n photodetectors in the 1.0- to 2.4-mm wavelength range”, Opt. Eng., vol. 43, no. 5, pp. 1014–1015 (2004).
    30. Z. Y. Liu, B. Hawkins, and T. F. Kuech, “Chemical and structural characterization of GaSb(100) surfaces treated by HCl-based solutions and annealed in vacuum”, J. Vac. Sci. Technol. B, vol. 21, no. 1, pp. 71-77 (2003).
    31. S. K. Lohokare, O. V. Sulima, V. A. Solov’ev, S. V. Ivanov, and D. W. Prather, “High-performance, 1.55 μm AlGaAsSb/AlGaSb pin photodetectors”, Electron. Lett., vol. 40, no. 21, pp. 1377-1378 (2004).
    32. J. W. Sulhoff, J. L. Zyskind, C. A. Burrus, J. C. DeWinter, M. A. Pollack, and J. C. Centanni, “Uniform performance of high-efficiency room-temperature GaInAsSb/GaSb photodiodes for 1.75 < X < 2.2 pm”, Appl. Opt., vol. 31, no. 18, pp. 3398-3340 (1992).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE