研究生: |
邱楷涵 Chiu, Kai-Han |
---|---|
論文名稱: |
使用絕對值的自回歸模型的模型選擇 Information Criterion for Infinite Variance Autoregressive Models with Least Absolute Deviation Estimation |
指導教授: |
銀慶剛
Ing, Ching-Kang |
口試委員: |
冼芻蕘
Sin, Chor-Yiu 俞淑惠 Yu, Shu-Hui |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 22 |
中文關鍵詞: | 絕對值 、自回歸模型 、模型選擇 |
外文關鍵詞: | Least deviation estimation, Stable distribution |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
假設Xt 是一個p 維度的自回歸模型,而他們的隨機項則滿足穩定分布的條件。
我們的目的是透過訊息量準則選擇p,不同於傳統方差的方法,我們這邊選擇用絕對值得方法來選取^p,最後我們證明當隨機項滿足他的穩定分布的係數α介於1到2之間的時候,我們的估計值^p會強收斂到真實的p值。
Suppose that Xt is a p-th order autoregressive process whose innovation follows a stable distribution. Our purpose is to choose p via an information criterion. Instead of the conventional least squares estimate, our estimate, ^p, of p is based on the least absolute
deviation. We prove that ^p is strongly consistent when the innovation is stable, with index 1 < α < 2.
References
[1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. Petrov and F. Csaki, eds.) 267-281. Akedemiai Kiado,16 Budapest.
[2] An, H. Z. and Chen, Z. G. (1982) On convergence of LAD estimates in autoregression with infinite variance.
J. Multiv. Anal., 12, 335-345.
[3] Knight, K. (1989) Consistency of Akaike's information criterion for infinite variance autoregressive processes. The Annals of Statistics. 17, 824-840.
[4] Davis R. A., Knight, K. and Liu, J. (1992) M-estimation for autoregressions with infinite variance. Stoch. Processes Appl., 40, 145-180.
[5] Feller, W. (1971) An Introduction to Probability Theory and its Applications, Vol. 2, Second ed., Wiley, New York.
[6] Gross, S. and Steiger, W. L. (1979) Least absolute deviation estimates in autoregression with infinite variance. J. Appl. Probab., 16, 104-116.
[7] Cline, D. B. H. (1983) Estimation and linear prediction for regression, autoregression and ARMA with infinite variance data. Ph.D. Dissertation. Department of Statistics, Colorado State University, Fort Collins, Colorado.
[8] Deheuvels, P., Haeusler, E., and Mason, D. (1988) Almost sure convergence of the Hill estimator. Math. Proc. Cambridge Philos. Soc., 104, 371-381.
[9] Nelder, John A.; R. Mead (1965). A simplex method for function minimization. Computer Journal. 7, 308-313.