研究生: |
聶至謙 Nieh, Chih-Chien |
---|---|
論文名稱: |
利用蒙地卡羅(MC)方法評估非均向解析演算法(AAA)於極度不均質狀況下之劑量準確度 Evaluation of accuracy of the Anisotropic Analytical Algorithm (AAA) under extreme inhomogeneities using Monte Carlo (MC) simulations |
指導教授: |
董傳中
Tung, Chuan-Jong 李宗其 Lee, Chung-Chi 趙自強 Chao, Tsi-Chian |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 不均質 、劑量評估 、AAA 、高密度金屬 、蒙地卡羅 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著放射治療技術迅速發展,劑量計算演算法對於輻射與物質作用也考慮得更加周詳,以達到更準確之劑量給予。2005年,Varian Medical System提出一種新的光子劑量計算演算法-非均向解析演算法(Anisotropic Analytical Algorithm;AAA)取代舊有之筆射束卷積演算法(Pencil Beam Convolution;PBC),以提供更加準確之劑量分佈計算。本研究主要利用蒙地卡羅方法(Monte Carlo;MC)評估AAA之計算準確性,探討於極度不均質的狀況下之劑量計算結果。首先,對MC劑量計算系統進行劑量驗證,再進一步建立極度不均質之數位假體,分別由AAA、PBC及MC羅模擬進行計算,最後再將劑量演算法與MC模擬之劑量分佈作比較。研究結果顯示,AAA相較於PBC,不論於極高或是極低密度造成不均質之狀況下,皆能提供較準確之計算結果。而PBC則是對於所有極度不均質附近之劑量計算皆不正確。相較於MC模擬,由於AAA假設光子劑量於深度及側向方向是獨立計算,並且沒有計算於假體內之二次電子遷移,這也使得在極度不均質界面附近無法完全考慮光子通量的衰減及帶電粒子不平衡之現象。
1. International Commission on Radiation Units and Measurements (ICRU). Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. ICRU Report 24. Washington (DC): ICRU; 1976.
2. American Association of Physicists in Medicine (AAPM),Radiation Therapy Committee, Task Group 105. “Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning”. AAPM report No. 105. Madison (WI): Medical Physics Publishing; 2007.
3. American Association of Physicists in Medicine (AAPM), Radiation Therapy Committee, Task Group 65. “Tissue Inhomogeneity Corrections for Megavoltage Photon Beams”. AAPM report No. 85. Madison (WI): Medical Physics Publishing; 2004.
4. M. J. Butson, R. Elferink, T. Cheung, et al., “Verification of lung dose in an anthropomorphic phantom calculated by the collapsed cone convolution method”. Phys Med Biol., 45(11):N143–N149, 2000.
5. W. Ding, P. N. Johnston, T. P. Wong, I. F. Bubb, “Investigation of photon beam models in heterogeneous media of modern radiotherapy”. Australas Phys Eng Sci Med., 27(2):39–48, 2004.
6. A. Fogliata, G. Nicolini, E. Vanetti, A. Clivio, L. Cozzi, “Dosimetric validation of the anisotropic analytical algorithm for photon dose calculation: fundamental characterization in water”. Phys Med Biol., 51(6):1421-1438, 2006.
7. A. Van Esch, L. Tillikainen, J. Pyykkonen, M. Tenhunen, H. Helminen, S. Sijamäki, J. Alakuijala, M. Paiusco, M. Iori, and D. P. Husykens, “Testing of the analytical anisotropic algorithm for photon dose calculation,” Med. Phys., 33:4130–4148, 2006.
8. C. M. Bragg, and J. Conway, “Dosimetric verification of the anisotropic analytical algorithm for radiotherapy treatment planning”, Radiotherapy and Oncology, Volume 81 (3): 315-323, 2006.
9. I. M. Gagne, S. Zavgorodni, “Evaluation of the analytical anisotropic algorithm in an extreme water–lung interface phantom using Monte Carlo dose calculations”. J Appl Clin Med Phys., 8(1):33–46, 2007.
10. E. Sterpin, M. Tomsej, B. De Smedt, N. Reynaert, and S. Vynckier, “Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator,” Med. Phys., 345:1665–1677, 2007.
11. D. Robinson, “Inhomogeneity correction and the analytic anisotropic algorithm,” J. Appl. Clin. Med. Phys., 9:112–122, 2008.
12. A. Fogliata, E. Vanetti, D. Albers, C. Brink, A. Clivio, T. Knoos, G. Nicolini, and L. Cozzi, “On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: Comparison with Monte Carlo calculations,” Phys. Med. Biol., 52:1363–1385, 2007.
13. A. Gray, L. D. Oliver, and P. N. Johnston, “The accuracy of the pencil beam convolution and anisotropic analytical algorithms in predicting the dose effects due to attenuation from immobilization devices”, Med. Phys., 36:3181, 2009.
14. 林堉烽, 以蒙地卡羅方法驗證強度調控放射治療的劑量分佈, 國立清華大學碩士論文, 2004.
15. W. Ulmer and D. Harder, “Applications of a triple Gaussian pencil beam model for photon beam treatment planning”, Z. Med. Phys., 6:68–74, 1996.
16. J. Sievinen, W. Ulmer, and W. Kaissl, “AAA photon dose calculation in Eclipse”, Varian documentation RAD #7170B, 2005.
17. W. Ulmer, J. Pyyry, and W. Kaissl, “A 3D photon superposition/ convolution algorithm and its foundation on results of Monte Carlo calculations”, Phys. Med. Biol., 50:1767–1790, 2005.
18. C. M. Ma, E. Mok, A. Kapur, T. Pawlicki, D. Findley, S. Brain, K. Forster, and A. L. Boyer, “Clinical implementation of a Monte Carlo treatment planning system”. Med. Phys., 26:2133, 1999.
19. A. Tzedakis, J. E. Damilakis, M. Mazonakis, J. Stratakis, H. Varveris, and N. Gourtsoyiannis, “Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams”, Med. Phys., 31:907, 2004.
20. K. Aljarrah, C. G. Sharp, T. Neicu, and B. S. Jiang, “Determination of the initial beam parameters in Monte Carlo linac simulation”, Med. Phys., 33:850, 2006.
21. D. Sheikh-Bagheri, D. W. Rogers, “Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters”. Med Phys., 29:379-390, 2002.
22. 彭宇民,蒙地卡羅模擬瓦里安21EX醫用直線加速器6MV光子射束之初始電子參數最佳化,2006.
23. 蔡雨恬, 以蒙地卡羅方式建構諾力刀系統及微多葉式準直儀並探討其劑量特性, 國立清華大學碩士論文, 2008.
24. J. V. Siebers, P. J. Keall, A. E. Nahum, and R. Mohan, “Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations”, Phys. Med. Biol., 45 983-995, 2000.
25. D. A. Low, W. B. Harms, S. Mutic, et al. “A technique for the quantitative evaluation of dose distributions”. Med. Phy., 25:656-611, 1998.
26. ICRP-23, Reference Man: anatomical, physiological and metabolic characteristics International Commission of Radiation Protection Report 23, 1975.
27. ICRU-44, Tissue substitutes in radiation dosimetry and measurement International Commission on Radiation Units and Measurements Report 44, 1988.
28. U. Fano, “Note on the Bragg-Gray cavity principle for measuring energy dissipation”. Radiat Res., 1:237, 1954.