研究生: |
宋翊瑄 Sung, Yi-Hsuan |
---|---|
論文名稱: |
氣相電泳法結合微流道系統以合成與即時定量分析金屬-有機框架與其衍生奈米材料 Real-time quantifying microfluidic-based synthesis of metal-organic framework and MOF-derived hybrid nanomaterials using gas-phase electrophoresis |
指導教授: |
蔡德豪
Tsai, De-Hao |
口試委員: |
黃振煌
Huang, Jen-Huang 潘詠庭 Pan, Yung-Tin 李岱洲 Lee, Tai-chou |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 微流道 、金屬-有機框架 、電泳 、氣溶膠 、膠體 |
外文關鍵詞: | Microfluidic, MOF, Electrophoresis, Aerosol, Colloid |
相關次數: | 點閱:71 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目標為將氣相電泳法結合微流道系統,用以合成與即時定量分析金屬-有機框架與其衍生奈米材料。
在第一部分的研究中,我們開發一以氣相電泳法為基礎之高解析度即時分析技術與方法: 電噴灑式氣相奈米粒子電移動度即時分析儀 (In-Situ Electrospray-differential mobility analyzer, In-Situ ES-DMA),用以研究金屬-有機框架 (Metal-organic frameworks, MOFs) 膠體奈米粒子於連續式微流體液滴合成系統的製備與合成,並選用ZIF-8 (Zeolitic imidazolate frameworks, ZIF-8) 作為連續式微流體液滴反應系統合成之金屬-有機框架奈米材料。
首先,我們藉由連續式ES-DMA即時性量測的結果,找到樣品在利用醋酸胺溶液稀釋20倍的條件下,會有很好的量測穩定性與再現性。接著,在固定此稀釋倍率的條件下,我們利用連續式ES-DMA即時觀察ZIF-8於連續式微流體液滴合成系統中生長的情形,探討在不同前驅物莫耳比例與合成溫度的條件下,其電移動度粒徑分布、數量濃度等基本性質的變化,並藉由ES-DMA公式之間的轉換得到樣品的產率。除此之外,我們也結合靜電收集器的影像分析,提供連續式ES-DMA相輔之分析結果,並分別利用其他儀器的輔助分析,觀察ZIF-8的合成、晶徑大小與孔洞結構變化。結果指出,隨著2-甲基咪唑/硝酸鋅前驅物莫耳濃度比例的降低與合成溫度提高的條件下,ZIF-8的電移動度粒徑與晶徑大小會隨之增加,但其數量濃度、比表面積、微孔體積與產率則會有所降低。
因此,我們成功開發出一高解析度連續式ES-DMA即時分析方法,並藉由合成參數條件的改變,觀察ZIF-8奈米粒徑尺寸與數量濃度的變化,進一步探討金屬有機框架膠體奈米材料於微流體液滴反應系統中的合成機制,以利後續MOF奈米材料性能表現的優化與改善。
而在第二部分的研究中,我們將氣相奈米粒子電移動度即時分析儀 (Differential mobility analyzer, DMA) 結合微流體液滴系統與氣溶膠合成系統,用以研究MOF衍生混成式奈米結構觸媒的合成,並將觸媒應用於逆水氣反應中,以期提升二氧化碳再利用之效能。
我們選用以銅為金屬節點之HKUST-1合成 MOF衍生混成式奈米結構觸媒,並利用DMA即時分析的結果,與其結合靜電收集器的影像分析,探討在不同奈米粒子為載體與前驅物濃度變化的條件下,在不同合成階段其電移動度粒徑分布、粒子形貌與樣品表面元素組成含量的變化,並藉由其他儀器的輔助分析,了解樣品的熱穩定性、結晶程度、比表面積以及孔體積。結果指出,連續式微流體液滴系統可以成功合成具有微米級結構之MOF混成式膠體粒子,並經由氣溶膠系統合成出MOF衍生混成式奈米觸媒。其中,以二氧化鈰為載體之MOF衍生混成式奈米材料的平均電移動度粒徑、金屬表面積與金屬銅的晶徑,會隨著樣品中金屬銅比例的增加而提升,而觸媒的表面積、孔洞體積、金屬分散度則會與金屬銅的比例呈現相反的趨勢。此外,選擇以在溶液中相較二氧化鈰於具有更好分散性的氧化鋁奈米粒子作為載體,可以使金屬銅更均勻地分布在載體,並使金屬銅的晶徑降低。
因此,透過氣相奈米粒子電移動度即時分析系統,可以即時探討連續式微流體液滴系統結合氣溶膠技術系統所合成的MOF衍生混成式奈米觸媒,其前驅物濃度與載體選擇對於觸媒材料性質的影響,並了解觸媒與後續逆水氣反應活性測試表現的關聯性,將有利於後續相關MOF衍生混成式奈米結構觸媒材料於此連續式合成系統的設計開發與二氧化碳再利用領域的應用。
In this study, we demonstrate a real-time quantifying microfluidic-based synthesis of metal-organic framework and MOF-derived hybrid nanomaterials using the gas-phase electrophoretic method.
In the first part of the work, a hyphenated electrospray-differential mobility analysis (ES-DMA) is developed for providing a high-resolution quantitative analysis for the metal-organic framework (MOF) colloid produced via microfluidic-based controlled synthesis. Zeolitic Imidazolate Framework-8 (ZIF-8) was chosen as the representative MOF of the study. The work successfully demonstrates a real-time analytic approach for the assurance of product quality and the concept of size control at the range of 100 to 200 nanometers through the changes of synthetic parameters using hyphenated electrospray-differential mobility analysis (ES-DMA). The mechanistic understanding of MOFs synthesized in microfluidic reactor is also useful for the prediction of the corresponding performance and material optimization in microfluidic synthesis of colloidal MOFs.
In the second part of the work, a hyphenated differential mobility analysis (DMA) combined with microfluidic-based aerosol synthesis system is developed for understanding the synthesis of metal-organic frameworks (MOFs) derived hybrid nanostructured catalysts. The effect of precursor concentration and carrier selection on the properties of the catalyst are investigated, as well as the correlation between the catalyst and their performance in reverse water-gas shift reaction. The work facilitates the production and the designed concept of relevant MOF-derived hybrid nanostructured catalysts in the continuous synthesis system and the enhancement of applications in carbon dioxide capture and utilization.
1. James, S.L., Metal-organic frameworks. Chemical Society Reviews, 2003. 32(5): p. 276-288.
2. Furukawa, H., et al., The chemistry and applications of metal-organic frameworks. Science, 2013. 341(6149): p. 1230444.
3. Zhou, H.-C., J.R. Long, and O.M. Yaghi, Introduction to metal–organic frameworks. Chemical Reviews, 2012. 112(2): p. 673-674.
4. Evans, A., R. Luebke, and C. Petit, The use of metal–organic frameworks for CO purification. Journal of Materials Chemistry A, 2018. 6(23): p. 10570-10594.
5. Rieth, A.J., Y. Tulchinsky, and M. Dincă, High and reversible ammonia uptake in mesoporous azolate metal–organic frameworks with open Mn, Co, and Ni sites. Journal of the American Chemical Society, 2016. 138(30): p. 9401-9404.
6. Sanz-Pérez, E.S., et al., Direct capture of CO2 from ambient air. Chemical Reviews, 2016. 116(19): p. 11840-11876.
7. Chung, Y.G., et al., In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Science Advances, 2016. 2(10): p. e1600909.
8. McDonald, T.M., et al., Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature, 2015. 519(7543): p. 303-308.
9. Xue, Y., et al., Metal–organic framework composites and their electrochemical applications. Journal of Materials Chemistry A, 2019. 7(13): p. 7301-7327.
10. Wang, H., et al., Metal-organic frameworks for energy applications. Chem, 2017. 2(1): p. 52-80.
11. Xu, G., et al., Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today, 2017. 20(4): p. 191-209.
12. Goetjen, T.A., et al., Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chemical Communications, 2020. 56(72): p. 10409-10418.
13. Pascanu, V., et al., Metal–organic frameworks as catalysts for organic synthesis: A critical perspective. Journal of the American Chemical Society, 2019. 141(18): p. 7223-7234.
14. Wang, L., M. Zheng, and Z. Xie, Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. Journal of Materials Chemistry B, 2018. 6(5): p. 707-717.
15. Osterrieth, J.W. and D. Fairen‐Jimenez, Metal–organic framework composites for theragnostics and drug delivery applications. Biotechnology Journal, 2021. 16(2): p. 2000005.
16. Yang, J. and Y.W. Yang, Metal–organic frameworks for biomedical applications. Small, 2020. 16(10): p. 1906846.
17. Allendorf, M.D., et al., Stress-induced chemical detection using flexible metal−organic frameworks. Journal of the American Chemical Society, 2008. 130(44): p. 14404-14405.
18. Lu, G. and J.T. Hupp, Metal−organic frameworks as sensors: a ZIF-8 based Fabry−Pérot device as a selective sensor for chemical vapors and gases. Journal of the American Chemical Society, 2010. 132(23): p. 7832-7833.
19. Liu, Y., et al., Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms. Journal of Materials Chemistry C, 2019. 7(35): p. 10743-10763.
20. Cai, X., et al., Nano-sized metal-organic frameworks: Synthesis and applications. Coordination Chemistry Reviews, 2020. 417: p. 213366.
21. Konnerth, H., et al., Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coordination Chemistry Reviews, 2020. 416: p. 213319.
22. Kaimeng, H., et al., HKUST-1 derived Cu@CuOx/carbon catalyst for base-free aerobic oxidative coupling of benzophenone imine: high catalytic efficiency and excellent regeneration performance. RSC Advances, 2020. 10(59): p. 36111-36118.
23. Wang, Z., et al., Lanthanide–Organic Framework Nanothermometers Prepared by Spray‐Drying. Advanced Functional Materials, 2015. 25(19): p. 2824-2830.
24. Stolar, T., et al., Scalable mechanochemical amorphization of bimetallic Cu−Zn MOF-74 catalyst for selective CO2 reduction reaction to methanol. ACS Applied Materials & Interfaces, 2021. 13(2): p. 3070-3077.
25. Yang, Y., et al., Cu/ZnOx@UiO-66 synthesized from a double solvent method as an efficient catalyst for CO2 hydrogenation to methanol. Catalysis Science & Technology, 2021. 11(13): p. 4367-4375.
26. Ronda-Lloret, M., et al., CuOx/CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction. Applied Catalysis A: General, 2018. 562: p. 28-36.
27. Avgouropoulos, G. and T. Ioannides, Effect of synthesis parameters on catalytic properties of CuO-CeO2. Applied Catalysis B: Environmental, 2006. 67(1-2): p. 1-11.
28. Chen, L., et al., Novel symmetrical coralloid Cu 3D superstructures: Solid-state synthesis from a Cu-carboxylate MOF and their in-situ thermal conversion. Journal of Solid State Chemistry, 2009. 182(8): p. 2298-2306.
29. Yang, J., et al., Hollow Zn/Co ZIF particles derived from core–shell ZIF‐67@ ZIF‐8 as selective catalyst for the semi‐hydrogenation of acetylene. Angewandte Chemie, 2015. 127(37): p. 11039-11043.
30. Peng, B., et al., Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process. Catalysis Today, 2018. 314: p. 122-128.
31. Zhang, F., et al., CuO/CeO2 catalysts with well-dispersed active sites prepared from Cu3 (BTC)2 metal–organic framework precursor for preferential CO oxidation. Catalysis Communications, 2012. 26: p. 25-29.
32. Zamaro, J.M., et al., HKUST-1 MOF: A matrix to synthesize CuO and CuO–CeO2 nanoparticle catalysts for CO oxidation. Chemical Engineering Journal, 2012. 195: p. 180-187.
33. Park, K.S., et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(27): p. 10186-10191.
34. Li, H., et al., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999. 402(6759): p. 276-279.
35. Park, S.E., et al., Supramolecular interactions and morphology control in microwave synthesis of nanoporous materials. Catalysis Surveys from Asia, 2004. 8(2): p. 91-110.
36. Ni, Z. and R.I. Masel, Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2006. 128(38): p. 12394-12395.
37. Lin, Z.J., D.S. Wragg, and R.E. Morris, Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions. Chemical Communications, 2006(19): p. 2021-2023.
38. Cho, H.Y., et al., CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catalysis Today, 2012. 185(1): p. 35-40.
39. Van Assche, T.R.C., et al., On controlling the anodic electrochemical film deposition of HKUST-1 metal-organic frameworks. Microporous and Mesoporous Materials, 2016. 224: p. 302-310.
40. Zhang, T., et al., Rapid synthesis of UiO-66 by means of electrochemical cathode method with electrochemical detection of 2,4,6-TCP. Inorganic Chemistry Communications, 2020. 111.
41. Li, M.Y. and M. Dinca, Reductive Electrosynthesis of Crystalline Metal-Organic Frameworks. Journal of the American Chemical Society, 2011. 133(33): p. 12926-12929.
42. Beldon, P.J., et al., Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angewandte Chemie-International Edition, 2010. 49(50): p. 9640-9643.
43. Li, P., et al., New synthetic strategies to prepare metal-organic frameworks. Inorganic Chemistry Frontiers, 2018. 5(11): p. 2693-2708.
44. Braga, D., et al., Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks. Dalton Transactions, 2006(10): p. 1249-1263.
45. Tanaka, Y., S. Yamada, and D. Tanaka, Continuous Fluidic Techniques for the Precise Synthesis of Metal-Organic Frameworks. ChemPlusChem, 2021. 86(4): p. 650-661.
46. Farrusseng, D., S. Aguado, and C. Pinel, Metal–organic frameworks: opportunities for catalysis. Angewandte Chemie International Edition, 2009. 48(41): p. 7502-7513.
47. Gaab, M., et al., The progression of Al-based metal-organic frameworks–From academic research to industrial production and applications. Microporous and Mesoporous Materials, 2012. 157: p. 131-136.
48. Sumida, K., et al., Carbon dioxide capture in metal–organic frameworks. Chemical Reviews, 2012. 112(2): p. 724-781.
49. Horcajada, P., et al., Metal–organic frameworks in biomedicine. Chemical Reviews, 2012. 112(2): p. 1232-1268.
50. Kumar, S., et al., Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coordination Chemistry Reviews, 2020. 420: p. 213407.
51. Julien, P.A., C. Mottillo, and T. Friščić, Metal–organic frameworks meet scalable and sustainable synthesis. Green Chemistry, 2017. 19(12): p. 2729-2747.
52. Freund, R., et al., The current status of MOF and COF applications. Angewandte Chemie International Edition, 2021. 60(45): p. 23975-24001.
53. Reinsch, H., “Green” Synthesis of Metal‐Organic Frameworks. European Journal of Inorganic Chemistry, 2016. 2016(27): p. 4290-4299.
54. Ameloot, R., et al., Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nature Chemistry, 2011. 3(5): p. 382-387.
55. Zhang, L., et al., Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors. Nano Letters, 2014. 14(11): p. 6626-6631.
56. Faustini, M., et al., Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal-Organic Framework Crystals and Hetero Structures in Confined Microdroplets. Journal of the American Chemical Society, 2013. 135(39): p. 14619-14626.
57. Rubio-Martinez, M., et al., New synthetic routes towards MOF production at scale. Chemical Society Reviews, 2017. 46(11): p. 3453-3480.
58. Dunne, P.W., E. Lester, and R.I. Walton, Towards scalable and controlled synthesis of metal-organic framework materials using continuous flow reactors. Reaction Chemistry & Engineering, 2016. 1(4): p. 352-360.
59. Beh, J.J., et al., Synthesis and size control of zeolitic imidazolate framework-8 (ZIF-8): From the perspective of reaction kinetics and thermodynamics of nucleation. Materials Chemistry and Physics, 2018. 216: p. 393-401.
60. Watanabe, S., et al., Synthesis of zeolitic imidazolate framework-8 particles of controlled sizes, shapes, and gate adsorption characteristics using a central collision-type microreactor. Chemical Engineering Journal, 2017. 313: p. 724-733.
61. Zhang, L. and Y. Xia, Scaling up the production of colloidal nanocrystals: should we increase or decrease the reaction volume? Advanced Materials, 2014. 26(16): p. 2600-2606.
62. Zhu, J., et al., Flame synthesis of Cu/ZnO–CeO2 catalysts: synergistic metal–support interactions promote CH3OH selectivity in CO2 hydrogenation. ACS Catalysis, 2021. 11(8): p. 4880-4892.
63. Mitsuka, Y., et al., Fabrication of Integrated Copper‐Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Spray‐Drying Method: Highly Enhanced CO2 Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie International Edition, 2021. 60(41): p. 22283-22288.
64. Wang, W., et al., Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 2011. 40(7): p. 3703-3727.
65. Chen, C.-S., W.-H. Cheng, and S.-S. Lin, Mechanism of CO formation in reverse water–gas shift reaction over Cu/Al2O3 catalyst. Catalysis Letters, 2000. 68(1): p. 45-48.
66. Zhang, L., Y. Zhang, and S. Chen, Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation. Applied Catalysis A: General, 2012. 415: p. 118-123.
67. Dasireddy, V.D., S.Š. Neja, and L. Blaž, Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol. Journal of CO2 utilization, 2018. 28: p. 189-199.
68. Hsueh, Y.-A., et al., Aerosol-Assisted Synthesis of Metal–Organic Framework-Derived Hybrid Nanomaterials for Reverse Water–Gas Shift Reaction. ACS Applied Nano Materials, 2022.
69. Gleiter, H., Nanostructured materials: basic concepts and microstructure. Acta Materialia, 2000. 48(1): p. 1-29.
70. Saleh, T.A., Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation, 2020: p. 101067.
71. Elzey, S., et al., Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Analytical and Bioanalytical Chemistry, 2013. 405(7): p. 2279-2288.
72. Wang, H.-L., et al., Thermal stability of metal–organic frameworks and encapsulation of CuO nanocrystals for highly active catalysis. ACS Applied Materials & Interfaces, 2018. 10(11): p. 9332-9341.
73. Kelly, W. and P.H. McMurry, Measurement of particle density by inertial classification of differential mobility analyzer–generated monodisperse aerosols. Aerosol Science and Technology, 1992. 17(3): p. 199-212.
74. Lenggoro, I.W., et al., Sizing of colloidal nanoparticles by electrospray and differential mobility analyzer methods. Langmuir, 2002. 18(12): p. 4584-4591.
75. Nguyen, T.P., et al., Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses. Analytical and Bioanalytical Chemistry, 2017. 409(25): p. 5933-5941.
76. Chiang, H.-L., et al., Aerosol Spray Controlled Synthesis of Nanocatalyst using Differential Mobility Analysis Coupled to Fourier-Transform Infrared Spectroscopy. Industrial & Engineering Chemistry Research, 2020. 59(24): p. 11187-11195.
77. Zhang, Z., et al., Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chemical Engineering Science, 2011. 66(20): p. 4878-4888.
78. Pan, Y. and Z. Lai, Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications, 2011. 47(37): p. 10275-10277.
79. Ren, G., et al., ZnO@ ZIF-8 core-shell microspheres for improved ethanol gas sensing. Sensors and Actuators B: chemical, 2019. 284: p. 421-427.
80. Nguyen, L.T., K.L. Ky, and T. Nam, A zeolite imidazolate framework ZIF-8 catalyst for friedel-crafts acylation. Chinese Journal of Catalysis, 2012. 33(4-6): p. 688-696.
81. Dai, H., et al., Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid. Applied Catalysis B: Environmental, 2015. 165: p. 57-62.
82. Duan, J., et al., High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. Journal of Membrane Science, 2015. 476: p. 303-310.
83. Lin, K.-S., et al., Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. International Journal of Hydrogen Energy, 2012. 37(18): p. 13865-13871.
84. Al-Janabi, N., et al., Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chemical Engineering Journal, 2015. 281: p. 669-677.
85. Wiedensohler, A., An approximation of the bipolar charge distribution for particles in the submicron size range. Journal of Aerosol Science, 1988. 19(3): p. 387-389.
86. Elzey, S., et al., Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Analytical and Bioanalytical Chemistry, 2013. 405(7): p. 2279-2288.
87. Tai, J.-T., et al., Quantifying nanosheet graphene oxide using electrospray-differential mobility analysis. Analytical Chemistry, 2015. 87(7): p. 3884-3889.
88. Chang, W.-C., et al., Quantifying surface area of nanosheet graphene oxide colloid using a gas-phase electrostatic approach. Analytical Chemistry, 2017. 89(22): p. 12217-12222.
89. Wang, H.-L., et al., A facile quantification of hyaluronic acid and its crosslinking using gas-phase electrophoresis. Analytical and Bioanalytical Chemistry, 2019. 411(7): p. 1443-1451.
90. Yamamoto, D., et al., Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer. Chemical Engineering Journal, 2013. 227: p. 145-150.
91. Schejn, A., et al., Controlling ZIF-8 nano-and microcrystal formation and reactivity through zinc salt variations. CrystEngComm, 2014. 16(21): p. 4493-4500.
92. Zhang, Y., et al., Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific Reports, 2018. 8(1): p. 1-7.
93. Pan, Y.C., et al., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 2011. 47(7): p. 2071-2073.
94. Hu, Y., et al., In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chemical Communications, 2011. 47(47): p. 12694-12696.
95. Ordonez, M.J.C., et al., Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010. 361(1-2): p. 28-37.
96. Tran, U.P., K.K. Le, and N.T. Phan, Expanding applications of metal− organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catalysis, 2011. 1(2): p. 120-127.
97. Zhang, Y., et al., Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Transactions, 2016. 45(32): p. 12653-12660.
98. Zeng, X., et al., Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect. ACS Applied Materials & Interfaces, 2016. 8(31): p. 20274-20282.
99. Chowdhuri, A.R., et al., One-pot synthesis of multifunctional nanoscale metal-organic frameworks as an effective antibacterial agent against multidrug-resistant Staphylococcus aureus. Nanotechnology, 2017. 28(9): p. 095102.
100. Liu, G., et al., Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017. 523: p. 185-196.
101. Jing, H.-P., et al., Photocatalytic degradation of methylene blue in ZIF-8. RSC Advances, 2014. 4(97): p. 54454-54462.
102. Zhou, Y., et al., Preparation of zeolitic imidazolate framework-8/graphene oxide composites with enhanced VOCs adsorption capacity. Microporous and Mesoporous Materials, 2016. 225: p. 488-493.
103. Fornero, E.L., et al., Transient analysis of the reverse water gas shift reaction on Cu/ZrO2 and Ga2O3/Cu/ZrO2 catalysts. Journal of CO2 Utilization, 2017. 22: p. 289-298.
104. Yang, S.-C., et al., Synergy between ceria oxygen vacancies and Cu nanoparticles facilitates the catalytic conversion of CO2 to CO under mild conditions. ACS Catalysis, 2018. 8(12): p. 12056-12066.
105. Zhang, X., et al., Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catalysis, 2017. 7(1): p. 912-918.
106. Zhuang, Y., et al., Highly-selective CO2 conversion via reverse water gas shift reaction over the 0.5 wt% Ru-promoted Cu/ZnO/Al2O3 catalyst. Applied Catalysis A: General, 2019. 575: p. 74-86.
107. Ding, M., X. Cai, and H.-L. Jiang, Improving MOF stability: approaches and applications. Chemical Science, 2019. 10(44): p. 10209-10230.
108. Mohamed, S.A., S. Chong, and J. Kim, Thermal stability of methyl-functionalized MOF-5. The Journal of Physical Chemistry C, 2019. 123(49): p. 29686-29692.