研究生: |
李承祐 Lee, Cheng-Yu |
---|---|
論文名稱: |
奈米結構硒化銻整合可撓式多晶矽電晶體製作1T1R光訊號放大感測器 Embedded nano-structure Sb2Se3 in poly-Si TFT for the fabrication of 1T1R flexible photo-detector with amplified response |
指導教授: |
闕郁倫
Chueh, Yu-Lun 沈昌宏 Sheng, Chang-Hong |
口試委員: |
黃文賢
Huang, Wen-Hsien 李連忠 Lee, Lain-Jong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 可撓式光感測器 、奈米材料整合 、1T1R 、訊號放大器 |
外文關鍵詞: | Flexible photo-detector, nano-material integration, 1T1R, Signal amplifier |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究受閘極感應機制啟發,而設計新型可撓式「1T1R」光訊號放大感測器以解決微縮化和低溫製程條件下訊號強度不足的問題。為了實現1T1R概念於可撓式感測器上的應用,我們選擇可彎曲、低製程溫度(<350oC)的硒化銻(Sb2Se3)作為光感材料。利用低溫蒸鍍以及電漿輔助化學氣相反應(PACVR)技術,製備寬帶光波長(λ= 350~1000 nm)偵測、高光暗電流比(Iphoto/Idark>1000)、快速反應時間(rising/falling time ~ 0.2sec)之光感材料於可撓式基板上。但隨著面積的微縮化,光訊號強度無可避免地受到限縮。為了放大感測訊號,我們採用低熱預算雷射結晶、退火與雷射光反射緩衝層技術直接製作高載子遷移率(50~100 cm2/V s)及CMOS兼容性的可撓式多晶矽電晶體,利用該電晶體所具備之高電流開關比(on/off ratio >105)、低次臨界擺幅(subthreshold slope ~ 200mV/dec)之優秀電晶體特性,增益因微縮化而被犧牲的訊號強度。
本論文比較可撓式硒化銻1T1R光訊號放大感測器在亮/暗環境下電容耦合的差別,探討感測器因有效電容變化而產生的閾值電壓平移現象(ΔVth ~ 2 V)。利用固定閘極電壓下極大的光暗電流比(Iphoto/Idark > 104),成功地將原先小面積之微弱光訊號(Iphoto/Idark ~ 40)透過電晶體放大約375倍並保留原材料快速反應時間(response time ~ 0.2 sec)的特性。除此之外,可撓式1T1R光訊號放大器經過不同曲率半徑的彎曲測試,以及可靠度檢驗,其閾值變化維持穩定且保留光電特性。因此可撓式1T1R光訊號放大感測器其微縮化、增強訊號、彎曲可靠度高的特性,將是未來物聯網時代不可或缺、且極具潛力的感測器應用。
Inspired by gate sensing mechanism, this research try to design a new type 1T1R flexible photo-detector with amplified response to solve the problem of insufficient signal intensity caused by scaling down and low process temperature. To realize the 1T1R concept on flexible sensors application, we select bendable, low process temperature (<350oC) antimony selenide (Sb2Se3) as our flexible photo-detector material. Preparing by low temperature sputter process and plasma-assisted chemical vapor reaction(PACVR), we can synthesize Sb2Se3 with broadband wavelength detection(λ= 350~1000 nm), high photo/dark current ratio(Iphoto/Idark>1000) and fast response time (~ 0.2sec) on flexible substrate. However, the photo-signal intensity is inevitably limited due to area shrinkage. As a result, we adopt the low thermal budget laser crystallization/annealing process and introduce laser reflective buffer layer to fabricate flexible poly-Si thin film transistor(TFT) with high carrier mobility (50~100 cm2/V s) and CMOS compatibility. The flexible poly-Si TFT equipped with high on/off ratio (>105) and low subthreshold slope (~200mV/dec) which is beneficial to amplified the sensing signal.
In this study, we compare the capacitance coupling effect of 1T1R flexible Sb2Se3 photo-detecting amplifier in light and dark condition to explore the threshold voltage shift (ΔVth~2V) generated by effective capacitance change. Through the gigantic current difference (Iphoto/Idark > 104) under fixed gate voltage, we have successfully amplified the weak signal (Iphoto/Idark~40) about 375 times and preserve fast response time (~ 0.2 sec) property. Furthermore, by bending experiment in different bending radius and reliability test, flexible 1T1R Sb2Se3 photo-detector exhibits stable optical properties and threshold voltage shift. Such flexible 1T1R Sb2Se3 photo-detector with amplified response, scaling area, and high reliability will be a potential sensor application in IoTs era.
1. IDC. New Product Launches Drive Double-Digit growth in the wearables Market, Says IDC. 2018; Available from: https://www.idc.com/getdoc.jsp?containerId=prUS44500418.
2. GrandViewResearch, Flexible Electronics Market By Components (Display, Battery, Sensors, Memory), By Application (Consumer Electronics, Automotive, Healthcare, Industrial) And Segment Forecast To 2024. 2016. p. 70.
3. Han, S.T., et al., An overview of the development of flexible sensors. Advanced Materials, 2017. 29(33): p. 1700375.
4. MarketsAndMarkets. Wearable Sensors Market by Type (Accelerometers, Magnetometers, Gyroscopes, Image Sensors, Inertial Sensors, Temperature & Humidity Sensors, Pressure & Force Sensors, Touch Sensors and Motion Sensors), Application (Wristwear, Eyewear, Bodywear), Vertical, and Geography - Global Forecast to 2022. 2017; Available from: https://www.marketsandmarkets.com/Market-Reports/wearable-sensor-market-158101489.html?gclid=Cj0KCQjwvdXpBRCoARIsAMJSKqLPGDHFAFHl-7Z5UIwDbkO-byMQ4PaDcCLjkOot9zUT03_LbosNswQaAthIEALw_wcB.
5. Ha, M., S. Lim, and H. Ko, Wearable and flexible sensors for user-interactive health-monitoring devices. Journal of Materials Chemistry B, 2018. 6(24): p. 4043-4064.
6. Someya, T., et al., A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proceedings of the National Academy of Sciences, 2004. 101(27): p. 9966-9970.
7. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
8. Yang, S., C. Jiang, and S.-h. Wei, Gas sensing in 2D materials. Applied Physics Reviews, 2017. 4(2): p. 021304.
9. Hsueh, F.-K., et al. Ultra-Low Power 3D NC-FinFET-based Monolithic 3D+-IC with Computing-in-Memory for Intelligent IoT Devices. in 2018 IEEE International Electron Devices Meeting (IEDM). 2018. IEEE.
10. Wong, W.S. and A. Salleo, Flexible electronics: materials and applications. Vol. 11. 2009: Springer Science & Business Media.
11. Son, D., et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature nanotechnology, 2014. 9(5): p. 397.
12. Xie, M., et al., Flexible Multifunctional Sensors for Wearable and Robotic Applications. Advanced Materials Technologies, 2019. 4(3): p. 1800626.
13. Ghoneim, M. and M. Hussain, Review on physically flexible nonvolatile memory for internet of everything electronics. Electronics, 2015. 4(3): p. 424-479.
14. Shahrjerdi, D. and S.W. Bedell, Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano letters, 2012. 13(1): p. 315-320.
15. Menard, E., et al., A printable form of silicon for high performance thin film transistors on plastic substrates. Applied Physics Letters, 2004. 84(26): p. 5398-5400.
16. Kim, S., et al., Flexible Crossbar‐Structured Resistive Memory Arrays on Plastic Substrates via Inorganic‐Based Laser Lift‐Off. Advanced Materials, 2014. 26(44): p. 7480-7487.
17. Lu, Q.-H. and F. Zheng, Polyimides for Electronic Applications, in Advanced Polyimide Materials. 2018, Elsevier. p. 195-255.
18. Wager, J.F., et al., An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Current Opinion in Solid State and Materials Science, 2014. 18(2): p. 53-61.
19. Huang, W.-H., et al., Junction-less poly-Ge FinFET and charge-trap NVM fabricated by laser-enabled low thermal budget processes. Applied Physics Letters, 2016. 108(24): p. 243502.
20. Kao, M.-H., et al., A sandwiched buffer layer enabling pulsed ultraviolet-and visible-laser annealings for direct fabricating poly-Si field-effect transistors on the polyimide. Applied Physics Letters, 2017. 111(2): p. 024101.
21. Xie, C. and F. Yan, Flexible photodetectors based on novel functional materials. Small, 2017. 13(43): p. 1701822.
22. Yokota, T., et al., Ultraflexible organic photonic skin. Science advances, 2016. 2(4): p. e1501856.
23. Park, S.I., et al., Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Advanced Functional Materials, 2008. 18(18): p. 2673-2684.
24. Wu, Y.-C., et al., Extrinsic origin of persistent photoconductivity in monolayer MoS 2 field effect transistors. Scientific reports, 2015. 5: p. 11472.
25. Shao, D., et al., Flexible, thorn-like ZnO-multiwalled carbon nanotube hybrid paper for efficient ultraviolet sensing and photocatalyst applications. Nanoscale, 2014. 6(22): p. 13630-13636.
26. Dang, V.Q., et al., High-performance flexible ultraviolet (UV) phototransistor using hybrid channel of vertical ZnO nanorods and graphene. ACS applied materials & interfaces, 2015. 7(20): p. 11032-11040.
27. Zhou, Y., et al., Thin-film Sb 2 Se 3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015. 9(6): p. 409.
28. Li, G., et al., Self-powered, high-speed Sb2Se3/Si heterojunction photodetector with close spaced sublimation processed Sb2Se3 layer. Journal of Alloys and Compounds, 2018. 737: p. 67-73.
29. Wen, X., et al., Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature communications, 2018. 9(1): p. 2179.
30. Chen, C., et al., Characterization of basic physical properties of Sb 2 Se 3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017. 10(1): p. 18-30.
31. Konstantatos, G. and E.H. Sargent, Nanostructured materials for photon detection. Nature nanotechnology, 2010. 5(6): p. 391.
32. Chen, B.-W., et al., Impact of repeated uniaxial mechanical strain on p-type flexible polycrystalline thin film transistors. Applied Physics Letters, 2015. 106(18): p. 183503.
33. Chu, M., et al., Strain: A solution for higher carrier mobility in nanoscale MOSFETs. Annual Review of Materials Research, 2009. 39: p. 203-229.
34. Song, H., et al., Highly anisotropic Sb2Se3 nanosheets: gentle exfoliation from the bulk precursors possessing 1D crystal structure. Advanced Materials, 2017. 29(29): p. 1700441.
35. Liang, N., et al., Surface effects on Raman scattering from Sb deposited on Ag-island films. Optics letters, 1983. 8(7): p. 374-376.
36. Shongalova, A., et al., On the identification of Sb 2 Se 3 using Raman scattering. MRS Communications, 2018. 8(3): p. 865-870.
37. Chen, C., et al., Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Applied Physics Letters, 2015. 107(4): p. 043905.
38. Hasan, M.R., et al., An antimony selenide molecular ink for flexible broadband photodetectors. Advanced electronic materials, 2016. 2(9): p. 1600182.
39. Chen, G., et al., Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Advanced science, 2015. 2(10): p. 1500109.