簡易檢索 / 詳目顯示

研究生: 曹長治
Chang-Chih Tsao
論文名稱: 白色念珠菌RHB1基因參與訊息傳導路徑及功能之研究
Study of the RHB1 gene-mediated signaling pathway and its functions in Candida albicans
指導教授: 藍忠昱
Chung-Yu Lan
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 61
中文關鍵詞: 白色念珠菌致病力小型G蛋白
外文關鍵詞: Candida albicans, RHEB, RHB1, virulence, cell wall integrity, MEP2
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白色念珠菌為一重要的真菌感染源,常見於院內感染之病例,以及免疫能力低落之病患。通常棲息於人類之口腔、喉部、大腸、皮膚及陰道等黏膜表面;等病人抵抗力機能衰退或受藥物副作用,即可侵入內部器官,引起溫和或嚴重的感染。Ras家族的小型G蛋白質(small G-protein)廣泛的在各種生物間被研究,包括Ras, Raf, Rho等等,都在細胞間的訊息傳導及功能上扮演著重要的角色。本研究著眼於一新發現的Ras家族小型G蛋白質,Rheb (Ras Homologue Enrich in Brain)在致病性真菌白色念珠菌(Candida albicans)中的同源基因RHB1所參與的訊息傳遞以及功能的探討。由於在另一致病性真菌燻煙色麴菌(Aspergillus fumigatus)中的同源基因已被證實與其致病能力相關,因此RHB1基因的研究也顯得有其重要性。為了進一步了解RHB1在白色念珠菌中所扮演的角色,本研究製造一缺乏RHB1基因的突變菌株,並比較其與正常野生菌株之差異。研究顯示RHB1可能參與了TOR激脢的訊息傳導路徑,並在其上游扮演活化因子的角色,並透過MEP2基因參與了白色念珠菌受到環境中氮源缺乏刺激而產生型態變化的機制。此外,RHB1也經由Mkc1激酶之訊息傳遞,參與細胞壁完整性的機制。最後,在使用老鼠的活體感染實驗中,RHB1也確實影響了白色念珠菌的致病能力。本研究顯示了小型G蛋白質在白色念珠菌中的訊息路徑及與環境因子之互動,同時也對白色念珠菌之致病能力及因子提供了嶄新的觀點。


    The TOR (target of rapamycin) kinase signaling pathway plays an important role in a wide variety of cell functions. In mammals, fly and fission yeast, the TOR kinase is controlled by signal components, including Rheb, a new member of the small G-proteins of Ras superfamily, which has been identified in most of model organism and involved in many cell functions. Moreover, the Rheb homologue in the human fungal pathogen, Aspergillus fumigatus, is involved in the virulence of this pathogen. In this study, the Rheb homologues in the fungal pathogen Candida albicans, RHB1 was identified. To gain insight into the function of these genes, the deletion strains of RHB1 was generated. In comparisons of the mutant to wild type strains, RHB1 deletion mutant showed enhanced sensitivities to potent anti-TOR kinase drug rapamycin, suggesting RHB1 correlated and has positive effect in TOR-like pathway in C. albicans. Further studies indicated RHB1 is involved in yeast-hyphae transition which responded to nitrogen starvation via a sensor protein Mep2, the downstream target of TOR signaling pathway. Moreover, RHB1 is involved in cell wall integrity pathway and transmitted signals through TOR kinase and downstream MAP kinase, MKC1. Finally, RHB1 alters C. albicans virulence in a mouse model of systemic infection. Together, this study reveals a novel signaling pathway and provides insights to correlate environmental signaling and C. albicans pathogeneis.

    中文摘要 I Abstract II Table of Contents III List of Tables V List of Figures VI 1. Introduction 1 2. Material and methods 5 Yeast strains and growth conditions 5 Cell morphogenesis 5 Plasmid construction 6 Gene disruption and over-expression of the C. albicans RHB1 gene 8 Reintegration of RHB1 into rhb1null mutant 9 Genomic DNA extraction and Southern hybridization 9 Total RNA isolation, RT-PCR and real-time quantitative PCR 10 Total protein extract and western blot 12 Assays for drug and stress sensitivity 13 Virulence assay 14 Extracellular phospholipase production 14 Co-immunoprecipitation 15 3. Results 16 I. Candida albicans RHB1 gene and the general effects of RHB1 gene deletion 16 Sequence conservation of RHB1 gene 16 Construction of the RHB1 deletion strains 16 The effects of RHB1 deletion mutants on cell morphogenesis 17 Cell sensitivity to toxic amino acid analog and oxidative stress 17 II. RHB1 involved in the TOR signaling pathway in C. albicans 19 Hypersensitivity of RHB1 mutants to rapamycin 19 RHB1 was related to cell growth 19 The construction of RHB1 overexpression strain 20 Effects of RHB1 on MEP2 expression and nitrogen starvation-induced f ilamentous growth 21 III. RHB1 mediated cell wall integrity and virulence of Candida albicans 22 RHB1 mutants showed hyper sensitivity to cell wall disturbing agents 22 RHB1 mutant enhanced the virulence of C .albicans in mouse model 24 4. Discussion 26 5. References 32 6. Tables 39 7. Figures 43 8. Appendix 60

    Aoki, S., Ito-Kuwa, Nakamura, Y., et al. (1990) Comparative pathogenicity of wild-type strains and respiratory mutants of Candida albicans in mice. Zentralbl. Bakteriol., 273, 332-343.

    Andrew, M. A., and Thomas, P. N. (2006) Thinking globally and acting locally with TOR. Curr Opin Cell Biol, 18(6):589-97.

    Aspuria, P.-J. and Tamanoi, F. (2004) The Rheb family of GTP-binding proteins. Cell Signal, 16:1105-1112.

    Aspuria, P. J., Sato, T., and Tamanoi, F. (2007) The TSC/Rheb/TOR signaling pathway in fission yeast and mammalian cells: temperature sensitive and constitutive active mutants of TOR. Cell cycle, 6:1692-1695.

    Beck-Sague, C.M. and Jarvis, W.R., (1993) Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. Journal of Infectious Diseases, 167:1247

    Bertram, P.G., Choi, J.H., Carvalho, J., Ai, W., Zeng, C., Chan, T.F., Zheng, X.F. (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem, 275(46):35727-33.

    Biswas, K., Morschhäuser, J. (2006) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol, 60(6):1603-4.

    Biswas, S., Dijck, P. V., and Datta, A. (2007) Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicnas. Microbiol Mol Biol Rev, 71:348-376.

    Cao, F., Lane, S., Raniga, P. P., Lu, Y., Zhou, Z., Ramon, K., Chen, J., Liu, H. (2006) The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol Biol Cell, 17(1):295-307.

    Cardenas, M.E., Cutler, N.S., Lorenz, M.C., Di Como, C.J., Heitman, J. (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev, 13(24):3271-9.

    Crespo, J.L., Powers, T., Fowler, B., Hall, M.N. (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A, 99(10):6784-9.

    Cruzm, M.C., Goldstein, A.L., Blankenship, J., Del Poeta, M., Perfect, J.R., McCusker, J.H., Bennani, Y.L., Cardenas, M.E., Heitman, J. (2001) Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother, 45(11):3162-70.

    Dabas N, Morschhäuser J. (2007) Control of ammonium permease expression and filamentous growth by the GATA transcription factors GLN3 and GAT1 in Candida albicans. Eukaryot Cell, 6(5):875-88.

    de Backer, M. D., Magee, P. T., and Pla, J. (2000) Recent development in molecular genetics of Candida albicans. Ann Rev Microbiol, 54:463-498.

    Ernst, J. F. (2000) Transcription factors in Candida albicnas: environmental control of morphogenesis. Microbiology, 146:1763-1774.

    F. C. Odds Superficial candidoses-preamble, p.92. In Candida and candidosis. Bailliere Tindall, London, UK

    Hiller, D., Sanglard, D., Morschhäuser, J. (2006) Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrob Agents Chemother, 50(7):2591.

    Hoffman, C.S., Winston, F. (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene, 57(2-3):267-72.

    Hsu, Y. C., Chern, J. J., Cai, Y., et al. (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature, 445:785-788.
    Inoki, K., Ouyang, H., Li, Y., and Guan, K. L. (2005) Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev, 69:79-100.

    Jansons, V. K. and Nickerson, W. J. (1970) Induction, morphogenesis, and germination of the chlamydospore of Candida albicans. J Bacteriol, 104:910-921.
    Levin, D.E. (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 69(2):262-91.

    Liao, W.L., Ramón, A.M., Fonzi, W.A. (2008) GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans. Fungal Genet Biol, 45(4):514-26.

    Lorenz, M.C., Heitman, J. (1998) The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J,17(5):1236-47.

    Mach, K. E., Furge, K. A., and Albright, C. F. (2000) Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics, 155:611-22.

    Martin, D. E. and Hall, M. N. (2005) The expanding TOR signaling network. Curr Opin Cell Biol, 17:1580166.

    Monge, R.A., Román, E., Nombela, C., Pla, J. (2006) The MAP kinase signal transduction network in Candida albicans. Microbiology, 152(Pt 4):905-12.

    Navarro-García, F., Sánchez, M., Pla, J., Nombela, C. (1995) Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol, 15(4):2197-206.

    Nobile, C.J., Bruno, V.M., Richard, M.L., Davis, D.A., Mitchell, A.P. (2003) Genetic control of chlamydospore formation in Candida albicans. Microbiology, 149 (Pt 12):3629-37

    Panepinto, J. C., Oliver, B. G., Amlung, T. W., Askew, D. S., and Rhodes, J. C. (2002) Expression of the Aspergillus fumigatus rheb homologue, rhbA, is induced by nitrogen starvation. Fungal Genet Biol, 36: 207-214.

    Panepinto, J. C., Oliver, B. G., Fortwendel, J. R., Smith, D. L., Askew, D. S., and Rhodes, J. C. (2003) Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduce in a model of invasive pulmonary aspergillosis. Infect Immun, 71:2819-2826.

    Patel, P.H., Thapar, N., Guo, L., Martinez, M., Maris, J., Gau, C.L., Lengyel, J.A., Tamanoi, F. (2003) Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J Cell Sci, 116 (Pt 17):3601-10.

    Patel, P.H., Tamanoi, F. (2006) Increased Rheb-TOR signaling enhances sensitivity of the whole organism to oxidative stress. J Cell Sci, 119(Pt 20):4285-92.

    Reuss, O., Vik, A., Kolter, R., Morschhäuser, J. (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene, 341:119-27.

    Samaranayake, L.P., Raeside, J.M., MacFarlane, T.W. (1984) Factors affecting the phospholipase activity of Candida species in vitro. Sabouraudia, 22, 201–207.

    Urano, J., Tabancav, A. P., Yang, W., and Tamanoi, F. (2000) The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J Biol Chem, 275: 11198-11206.

    Urano,J., Comiso, M. J., Guo,L., et al., (2005) Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol, 58:1074-1086.

    Urano, J., Sato, T., Matsuo, T., et al., (2007) Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc Natl Acad Sci U S A, 104:3514-3519.

    Uritani, M., Hidaka, H., Hotta, Y. et al., (2006) Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase.
    Genes Cells, 11:1367-1379.

    Whiteway, M. and Bachewich, C. (2007) Morphogenesis in Candida albicans. Annu Rev Microbiol, 61:529-553.

    Xiaomeng, L., Yenshou, L., Sara, O.V., Kazuyoshi, Y., and Joseph, A. (2005) Rheb Binds and Regulates the mTOR Kinase. Current Biology, Vol 15, 702-713.

    Yamagata, K., Sanders, L. K., Kaufmann, W. E., et al., (1994) rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem, 269:16333-16339.

    Yang, W., Tabancay, A.P. Jr, Urano, J., Tamanoi, F. (2001) Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant. Mol Microbiol, (6):1339-47.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE