研究生: |
邱鈺中 Chiu, Yu-Chung |
---|---|
論文名稱: |
BACKWARD CONVERSION LIMITED ULTRAFAST SECOND HARMONIC GENERATION |
指導教授: |
黃衍介
Huang, Yen-Chieh |
口試委員: |
林士強
陳彥宏 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 二倍頻 |
外文關鍵詞: | SHG |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, we investigate ultrafast second harmonic generations (SHG). The pump laser is a mode-locked fiber laser at 1.56 □m with a 0.6 ps pulse width and 1.5 kW peak powers, so the walk-off problems also need to be considered in our study In order to satisfy phase matching condition and compensate group velocity walk-off, the quasi-phase technique was a possible method to design an engineerable nonlinear optics crystal. The nonlinear crystal in these experiments was a type-I (ooe), 30-mm long Mg:PPLN crystal with a 20.6 □m period. The phase and group mismatches of the mixing waves at 1560 and 780 nm were simultaneously compensated in this crystal.
Since the phase matching acceptance bandwidth of our design is about 30 nm, therefore, the phase matching conditions of other □□ nonlinear processes, such as sum-frequency generation (SFG), difference-frequency generation (DFG), and cascaded SHG/DFG, are also satisfied near the broad pump spectrum. The first evidence of cascaded nonlinear processes was that the spectral bandwidth of the fundamental wave was 1.08 times the original one. The second evidence of cascaded nonlinear processes was shown in a dual continuous-wave diode lasers pumped SHG The side band spectra provide evidence on the presence of cascading nonlinear processes simultaneously. Therefore, the cascaded processes are experimentally and numerically confirmed as a mechanism to limit the conversion efficiency of the ultrafast SHG to about 30 %.
[1] S. Kawanishi, M. H. Chou, K. Fujiura, M. Fejer, and T. Morioka, “Alloptical modulation and time-division-multiplexing of 100 Gbit/s signal using quasi-phasematched mixing in LiNbO waveguides,” Electron. Lett. 36, 1568–1569, (2000).
[2] Y. Wang C. Q. Xu, “Analysis of Ultrafast All-Optical OTDM Demultiplexing Based on Cascaded Wavelength Conversion in PPLN Waveguides,” IEEE PHOTONICS TECHNOLOGY LETTERS 19, 495-497, (2007).
[3] G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: Pulse compression and shaping,” J. Opt. Soc. Amer. B, Opt. Phys. 17, 304–318, (2000).
[4] C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 m band efficient broadband avelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63, 3559–3561, (1993).
[5] T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276, (1990).
[6] L. E. Nelson, S. B. Fleischer, G. Lenz, E. P. Ippen, “Efficiency frequency doubling of a femtosecond fiber laser,” Opt. Lett. 21, 1759–1761, (1996).
[7] X. Liu, L. J. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268, (1997).
[8] N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at communications band,” Opt. Lett. 27, 1046–1048, (2002).
[9] J. Zhang, Y. Chen, F. Lu, W. Lu, W. Dang, X. Chen, and Y. Xia, “Effect of MgO doping of periodically poled lithium niobate on second-harmonic generation of femtosecond laser pulses,” Appl. Opt. 46, 7792-7796, (2007).
[10] R. Wu, Y. Chen, J. Zhang, X. Chen, and Y. Xia, “Broadening of the second-harmonic phase-matching bandwidth in type II periodically poled KTP,” Appl. Opt. 44, 5561–5564, (2005).
[11] M. J. Gong, Y. P. Chen, F. Lu, and X. F. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett. 35, 2672–2674, (2010).
[12] J. F. Zhang, Y. P. Chen, F. Lu, and X. F. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express, 16, 6957–6962, (2008).
[13] N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390, (2003).
[14] S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Appl. Phys. Lett. 84, 1055–1057, (2004).
[15] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939, (1962).
[16] K. J. Lee, S. Liu, K. Gallo, P. Petropoulos and, D. J. Richardson, “Analysis of acceptable spectral windows of quadratic cascaded nonlinear processes in a periodically poled lithium niobate waveguide,” Opt. Express 19, 8327-8335, (2011).
[17] O. Gayer, Z. Sacks, E. Galun, A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348, (2008).
[18] W. Liu, J. Sun, J. Kurz, ”Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216, 239-246, (2003).
[19] J. Wang, J. Q. Sun, X. L. Zhang, X. H. Yuan and D. X. Huang, “Experimental observation of tunable wavelength down- and up-conversions of ultrashort pulses in a periodically poled LiNbO,” Opt. Commun. 269, 179-187, (2007).
[20] O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg . “Continuous-waveFrequency tripling and quadrupling by simultaneous threewave mixings in periodically poled crystals: application to a two-step 1.19–10.71-mm frequency bridge,” Opt. Lett. 22, 1211–1213, (1997).
[21] X. Xiao, C. Yang, S. Gao, and H. Miao, “Analysis of ultrashortpulse second-harmonic genera tion in both phase- and group-velocitymatched structures,” J. Quantum Electron. 41, 85-93 (2005)