簡易檢索 / 詳目顯示

研究生: 邱俊達
論文名稱: 一個管狀非絕熱反應器軸向分散模型的多重穩定狀態解探討
Numerical Investigation for the Multiple Steady-State Solutions of Axial Dispersion in a Tubular Non-adiabatic Reactor Model
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2004
畢業學年度: 93
語文別: 中文
論文頁數: 168
中文關鍵詞: 打靶法初始值解法隱函數定理虛擬弧長延拓法分歧圖多重穩定狀態解
外文關鍵詞: shooting method, Runge-Kutta mehtod, implicit function theorem, pseudo-arclength continuation method, bifurcation diagram, multiple steady-state solutions
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要在探討一個管狀非絕熱反應器軸向分散模型的多重穩定狀態解。我們將提供一種演算法來求整個解路徑,並延拓隨著一個參數變動的多重穩定狀態解,稱之為虛擬弧長延拓法(pseudo-arclength continuation method)。虛擬弧長延拓法是基於打靶法、牛頓法、初始值解法、猜測及解法(predictor-solver)及隱函數定理等數值方法,且我們將利用其來探討軸向分散模型的多重穩定狀態解路徑。本文中,我們將藉由係數的改變,分歧圖的討論及多重穩定狀態解圖形的探討,並說明產生多重穩定狀態解的參數區間與初始條件的相互關係。


    This thesis investigates the multiple steady state solutions of axial dispersion in a tubular non-adiabatic reactor model. In this study, a special algorithm is presented to find the whole solution path and to continue the multiple steady state solution path with different parameters. This is called pseudo-arclength continuation method, which is based on the shooting method, Newton’s method, Runge-Kutta method, predictor-solver and the implicit function theorem, of which we will make use to discuss the multiple steady state solution paths of axial dispersion model. In this study, we will observe the coefficient changes, discuss the bifurcation diagram of the multiple steady state solutions, and then explain the coefficient range of the multiple steady solutions as well as their correlations with the initial condition.

    第一章 緒論 1 第二章 分歧理論與虛擬弧長延拓法 5 2.1 分歧問題與穩定解 ………………………………………… 5 2.2 分歧理論 …………………………………………………… 8 2.3 局部延拓法 ……………………………………………… 10 2.3.1 預測法 ……………………………………………… 10 2.3.2 解法 ………………………………………………… 12 2.4 虛擬弧長延拓法 ………………………………………… 13 第三章 非線性方程穩定狀態解的數值方法 16 3.1 穩定狀態解的數值解法 ……………………………… 16 3.2 非線性方程穩定狀態解路徑之延拓 ………………… 21 第四章 數值實驗 28 4.1 實驗一:β值實驗結果 ………………………………… 29 4.2 實驗二:θc值實驗結果 ………………………………… 50 4.3 實驗三:Pey值實驗結果 ……………………………… 70 4.4 實驗四:Peθ值實驗結果 ……………………………… 91 4.5 實驗五:B值實驗結果 ………………………………… 107 4.6 實驗六:γ值實驗結果 ………………………………… 128 第五章 結論 162 參考文獻 164

    [1] Allgower,E.L. and Chien,C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265- 1281, 1986.
    [2] Aselone,P.M. and Moore,R.H., An Extension of the Newton Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. l3, pp.476-501, 1966.
    [3] Atkinson,K.E., The numerical solution of bifurcation problems, SIAM J. Numer. Anal., 14(4), pp.584-599, 1977.
    [4] Bauer,L., Reiss,E.L., and Keller,H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, pp. 529-568, 1970.
    [5] Brezzi,F., Rappaz,J. and Raviart,P.A., Finite dimensional approximation of a bifurcation problems, Numer. Math., 36, pp.1-25, 1980.
    [6] Brown,K.J., Ibrahim,M.M.A. and Shivaji,R., S-Shaped bifurcation curves, Nonlinear Analysis, T.M.A, 5, pp.475-486, 1981.
    [7] Burton,T.A., Stability and Periodic Solution of Ordinary and Functional Differential Equations, Academic Press, 1985.
    [8] Coddington, E. A.,and Levinson N., Theory of Ordinary Differential Equations, McGraw Hill.New York, 1955.
    [9] Coron,J.M., Periodic Solutions of a Nonlinear Wave Equation without Asumptions of Monotonicity. Math. Ann., 262, pp.273-285, 1983.
    [10] Crandall,M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H. Rabinowitz, Academic Press, pp. 1-35, 1977.
    [11] Crandall,M.G. and Rabinowitz,P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
    [12] Crandall,M.G. and Rabinowitz,P.H., Bifurcation, Perturbation of Simple Eigenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, pp.161-180, 1973.
    [13] Crandall,M.G. and Rabinowitz,P.H., Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos,C. and Bessis,D., NATO Advanced Study Institute Series, 1979.
    [14] Hale, J. K., Ordinary Differential Equations, Wiley Interscience, New York, 1969.
    [15] Iooss,G and Joseph,D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
    [16] Jepson,A.D. and Spence,A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A. Iserles, MJD Powell, 1987.
    [17] J.Glover, A.C.Lazer, and P.J.McKenna, Existence and Stability of Large Scale Nonlinear Oscillations in Suspension Bridges, Journal of Applied Mathematics and Physics Vol. 40, 1989.
    [18] Keller,H.B., in " Recent Advances in Numerical Analysis ", Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p 73, 1978.
    [19] Keller,H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987.
    [20] Keller,H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz,P.H., Academic Press, pp.359-384, 1977.
    [21] Keller,H.B. and Langford,W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal., 48, pp.83-108, l972.
    [22] Küpper,T., Mittelmann,H.D. and Weber,H.(eds.), Numerical Methods for Bifurcation Problems, Birkhäuser, Basel, 1984.
    [23] Kubiček,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, 1983.
    [24] Lazer,A.C. and McKenna,P.J., Large Amplitude Periodic Oscillations in Suspension Bridge: Some New Connections with Nonlinear Analysis. SIAM Rev. 32, pp.537-578, 1989.
    [25] Matsuaki,M., Experimental Study on Vortex Excited Oscillation of Suspension Bridge Towers. Trans. Jap. Soc. Civil Eng. l5, pp.172-174, 1985.
    [26] McKenna,P.J. and Walter W., Nonlinear Oscillations in a Suspension Bridge. Archive for Rational Mechanics and Analysis. 98(2), pp. 167-177, 1987.
    [27] Patil,S.P., Response of Infinite Railroad Track to Vibrating Mass. J. Eng. Mech.114, pp.688-703, 1988.
    [28] Q-Heung Choi and Tacksun Jung, Periodic Solution of the Lazer- McKenna Suspension Bridge Equation, to be submitted, 1989.
    [29] Rheinboldt,W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237, 1980.
    [30] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley, New York.
    [31] Shivaji,R., Uniqueness result for a class of postione problems, Nonlinear Analysis: theory, methods and application, 7, pp.223-230, 1983.
    [32] Wacker,H.(ed),Continuation Methods, Academic Press, New York, 1978.
    [33] Wang,S.H., On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, pp.1475-1485, 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE