簡易檢索 / 詳目顯示

研究生: 王豐寓
Feng-Yu Wang
論文名稱: 鯉科魚類視覺基因的適應演化
Adaptive Evolution of Visual Genes in Cyprinids
指導教授: 曾晴賢
Chyng-Shyan Tzeng
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 79
中文關鍵詞: 視覺基因鯉科適應演化最大吸收光波長光譜位移
外文關鍵詞: spectral shift, λmax, nuptial coloration, opsin gene, photic environment
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鯉科是淡水魚類最大的一群,絕大多數都是體色樸素的種類,但少數的亞科、屬具有鮮豔的體色。其中魚丹亞科中一些特化的魚種其體色鮮豔並具有婚姻色,適合用來研究視覺基因與體色的相關性。此外鯉科魚類棲息的環境差異很大,從清澈的小溪到混濁湖泊都可以發現其蹤跡,因此,鯉科魚類也是用來研究棲地光環境與視覺基因相關性的好材料。本研究主要是利用鯉科魚類棲地與體色的多樣性來測試兩個假說:一,魚類的視覺能力與視覺基因是否與體色上的差異具有相關性;二,鯉科魚類的視覺能力及其相對應的視覺基因是否會受到棲地光環境的影響而產生適應演化的現象。
    我們定序了魚丹亞科裡的長鰭鱲(Opsariichthys evolans )、粗首鱲(Opsariichthys pachycephalus )與馬口魚(Candidia barbatus )三種體色獨特且鮮豔的台灣特有鯉科魚類的視覺基因(分別是吸收UV光的SWS1、藍光的SWS2、綠光的Rh2、紅光的LWS以及感應明暗視覺的rhodopsin),並且測量這三種魚的視網膜吸收光譜與體表反射光譜。結果發現,鯉科魚類的體色跟視覺基因有很高的相關性,各魚種之體色上在藍色的反射光譜有明顯的差異;而在視覺能力方面,各魚種在藍色與綠色視覺基因的最大吸收光波則有不同程度的光譜位移。這三種鮮豔的鯉科魚類體色的差異反應了視覺能力的不同,而這樣的差異是由視覺基因序列的改變、視覺基因表現的不同與基因序列改變所造成。
    我們並定序了其他四種體色樸素且生活習性截然不同的鯉科魚類(台灣石□Acrossocheilus paradoxus、台灣鏟頷魚Onychostoma barbatula、羅漢魚Pseudorasbora parva以及唇□Hemibarbus labeo)的視覺基因,同時測量其視網膜吸收光譜。結果發現,棲地光環境的改變影響了感應明暗、藍光、綠光與紅光的視覺基因之表現,並在這些基因的λmax上發現明顯的光譜位移。生活在清澈水域的鯉科魚類使用較短波長的視覺基因,而在混濁水域的種類則使用較長波長的視覺基因。這樣的差異,在rhodopsin、Rh2 與 LWS 等視覺基因中可能是因為使用不同的chromophore或者累積了基因序列上比較次要的改變所造成的,而在 SWS1 與 SWS2則是由基因序列改變所造成的。由以上的結果,我們認為體色與棲地光環境的差別影響了鯉科魚類的視覺能力,而鯉科魚類視覺基因也因為這樣的差異而產生了適應演化的現象。


    Cyprinidae is the largest freshwater fish family, and their habitats are diverse from clear to turbid water. Several specific genera from this group exhibit unique nuptial coloration, although most of them are drab in their coloration. This study was aimed to test two hypotheses. First, differences in nuptial coloration among colorful cyprinids could reflect differences in color vision and opsin gene sequences. Second, photic environments of habitats could affect the visual abilities and the opsin genes of cyprinids. To test the first hypothesis, genes encoding the visual pigments of three colorful cyprinids (Opsariichthys evolans, Opsariichthys pachycephalus and Candidia barbatus) were cloned and sequenced, the λmax of cone photoreceptor absorption spectra and the reflectance spectra of their body coloration were measured. It was found that the differentiation of spectral sensitivities and unique nuptial coloration of the colorful cyprinids might have evolved through sexual selection. The results also indicated that the spectral shift among colorful cyprinids could result from differential expression of opsin genes and amino acid substitutions. At the same time, other four dull-colored cyprinid (Acrossocheilus paradoxus, Hemibarbus labeo, Pseudorasbora parva and Onychostoma barbatula) lived in different habitats were tested to test the second hypothesis. The photic environments of habitats where the cyprinids lived could affect their visual abilities in blue-, green-, and red-sensitive photoreceptors. The cyprinids inhabited clear water use photoreceptors with shorter wavelength opsins, yet the species lived in turbid water possess photoreceptors with longer wavelength opsins. The alternative chromophore usage and accumulation of the complex interactive substitutions could dominate the obvious spectral differences of rhodopsin, Rh2, and LWS between the cyprinids inhabited two distinct photic environments. The amino acid substitutions may be responsible for differences in the absorbance of SWS1 and SWS2. These results support our hypotheses that nuptial coloration and photic environment of habitats could be tied to visual sensitivities and opsin genes.

    Contents 1. Introduction 1.1 Opsin genes of vertebrates……………………………………………………. 1 1.2 The mechanisms of spectral tuning of photoreceptors………………………. 2 1.3 Adaptive evolution of opsin genes………………………………………….. 3 1.4 Studies of opsin genes in cyprinids………………………………………..…..4 1.5 Colorful cyprinids inhabited similar environments……………………..……..5 1.6 Dull cyprinids inhabited variant photic environments……………………….6 1.7 The purposes of this study……………………………………………………7 2. Materials and Methods 2.1 Samples collections………………………………………………………….8 2.2 Characterization of body coloration………………………………………….8 2.3 Microspectrophotometry……………………………………………………9 2.4 cDNA synthesis and PCR amplification of opsin genes…………………….9 2.5 Cloning and sequencing……………………………………………………..10 2.6 Sequence analysis……………………………………………………………11 3. Results 3.1 Differences in body coloration among cyprinids 3.2 MSP 3.2.1 λmax measurements of rod cells of cyprinids…………………………12 3.2.2 λmax measurements of cone cells of colorful cyprinids………………13 3.2.3 λmax measurements of cone cells of dull cyprinids…………………13 3.3 Nucleotide and amino acid sequences of tested cyprinids 3.3.1 Rh1 gene……………………………………………………………….14 3.3.2 SWS1 gene…………………………………………………………….15 3.3.3 SWS2 gene…………………………………………………………….16 3.3.4 Rh2 gene……………………………………………………………….17 3.3.5 LWS gene………………………………………………………………18 4. Discussion 4.1 The relationship between differences in nuptial coloration and its opsin genes sequences among the colorful cyprinids 4.1.1 Positive correlation between spectral sensitivity and nuptial coloration…………..20 4.1.2 Molecular mechanisms of the spectral shift between the colorful cyprinids………21 4.1.3 Opsin gene polymorphism of the vivid cyprinids…………………………………23 4.2 Adaptive evolution of opsin genes results from adjusting to the distinct photic environments 4.2.1 Positive correlation between spectral sensitivity and photic environments………..24 4.2.2 Molecular mechanisms of the spectral shift resulting from adapting different photic environments in Cyprinidae……………………………………………………….26 4.3 Evolution of opsin gene in Cyprinidae………………………………………29 5. Conclusion…………………………………………………………………………….32 References………………………………………………………………………………..33 Tables……………………………………………………………………………………..41 Figures……………………………………………………………………………………49 Appendixes………………………………………………………………………………..57

    References
    Bowmaker, J.K. (1995). The visual pigments of fish. Progress in Retinal and Eye Research, 15, 1-31.
    Carleton, K.L., & Kocher, T.D. (2001). Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Molecular Biology and Evolution, 18, 1540-1550.
    Carleton, K.L., Parry, J.W.L., Bowmaker, J.K., Hunt, D.M., & Seehausen, O. (2005). Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Molecular Ecology, 14, 4341-4353.
    Chen, I.S., & Chang, Y.C. (2005). A photographic guide to the inland-water fishes of Taiwan. Keelung, Taiwan: The Sueichan Press. p. 284. (in Chinese with English abstract)
    Chen, Y.Y. (1982). A review of Opsariichthine cyprinid fishes. Oceanologia et Limnologia Sinica, 13, 293-299. (in Chinese)
    Chinen, A., Hamaoka, T., Yamada, Y., & Kawamura, S. (2003). Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics, 163, 663-675.
    Chinen, A., Matsumoto, Y., & Kawamura, S. (2005a). Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation. Molecular Biology and Evolution, 22, 1001-1010.
    Chinen, A., Matsumoto, Y., & Kawamura, S. (2005b). Spectral differentiation of blue opsins between phylogenetically close but ecologically distant goldfish and zebrafish. The Journal of Biological Chemistry, 280, 9460-9466.
    Chittka, L., & Menzel, R. (1992). The evolutionary adaptation of flower colours and the insect pollinators' colour vision. Journal of Comparative Physiology A, Sensory, Neural and Behavioral Physiology, 171, 171-181.
    Cowing, J.A., Poopalasundaram, S., Wilkie, S.E., Bowmaker, J.K., & Hunt, D.M. (2002a). Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. Biochemistry, 41, 6019-6025.
    Cowing, J.A., Poopalasundaram, S., Wilkie, S.E., Robinson, P.R., Bowmaker, J.K., & Hunt, D.M. (2002b). The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. Biochemical Society, 367, 129-135.
    Crescitelli, F., & Dartnall, H.J.A. (1954). A photosensitive pigment of the carp retina. Journal of Physiology, 125, 607-627.
    Douglas, R.H., & McGuigan, C.M. (1989). The spectral transmission of freshwater teleost ocular media-an interspecific comparison and a guide to potential ultraviolet sensitivity. Vision Research, 29, 871-879.
    Ebrey, T., & Koutalos, Y. (2001). Vertebrate photoreceptors. Progress in Retinal and Eye Research, 20, 49-94.
    Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160-174.
    Hawryshyn, C.W., & Harosi, F.I. (1991). Ultraviolet photoreception in carp: microspectrophotometry and behaviorally determined action spectra. Vision Research, 31, 567-576.
    Hoffmann, M., Tripathi, N., Henz, S.R., Lindholm, A.K., Weigel, D., Breden, F., & Dreyer, C. (2007). Opsin gene duplication and diversification in the guppy, a model for sexual selection. Proceedings of the Royal Society B, 274, 33-42.
    Hunt, D.M., Dulai, K.S., Partridge, J.C., Cottrill, P., & Bowmaker, J.K. (2001). The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. The Journal of Experimental Biology, 204, 3333-3344.
    Hunt, D.M., Fitzgibbon, J., Slobodyyanyuk, S.J., & Bowmaker, J.K. (1996). Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Research, 36, 1217-1224.
    Janz, J.M., & Farrens, D.L. (2001). Engineering a functional blue-wavelength-shifted rhodopsin mutant. Biochemistry, 40, 7219-7227.
    Johnson, R.L., Grant, K.B., Zankel, T.C., Boehm, M.F., Merbs, S.L., Nathans, J., & Nakanishi, K. (1993). Cloning and expression of goldfish opsin sequences. Biochemistry, 32, 208-214.
    Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120.
    Kusmic, C. & Gualtieri, P. (2000) Morphology and spectral sensitivities of retinal and extraretinal photoreceptors in freshwater teleosts. Micro, 31, 183-200.
    Lipetz, L.E., & Cronin, T.W. (1988). Application of an invariant spectral form to the visual pigments of crustaceans-implications regarding the binding of the chromophore. Vision Research, 28, 1083-1093.
    Loew, E.R. (1994). A third, ultraviolet-sensitive, visual pigment in the today-gecko (Gekko gekko). Vision Research, 34, 1427-1431.
    Losey, G.S. (2003). Crypsis and communication functions of UV-visible coloration in two coral reef damselfish, Dascyllus aruanus and D. reticulates. Animal Behavior, 66, 299-307.
    Maan, M.E., Hofker, K.D., ven Alphen, J.J.M., & Seehausen, O. (2006). Sensory drive in cichlid speciation. The American Naturalist, 167, 947-954.
    MacNichil, E.F.J. (1986). A unifying presentation of photopigment spectra. Vision Research, 26, 1543-1556.
    Matsumoto, Y., Fukamachi, S., Mitani, H., & Kawamura, S. (2006). Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene, 371, 268-278.
    Minamoto, T., & Shimizu, I. (2005). Molecular cloning of cone opsin genes and their expression in the retina of a smelt, Ayu (Plecoglossus altivelis, Teleostei). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 140, 197-205.
    Nagata, T., Oura, T., Terakita, A., Kandori, H., & Shichida, Y. (2002). Isomer-specific interaction of the retinal chromophore with threonine-118 in rhodopsin. Journal of Physical Chemistry A, 106, 1969-1975.
    Nathans, J. (1990a). Determinants of visual pigment absorbance identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry, 29, 9746-9752.
    Nathans, J. (1990b). Determinants of visual pigment absorbance role of charged amino acids in the putative transmembrane segments. Biochemistry, 29, 937-942.
    Nawrocki, L., Bremiller, R., Streisinger, G., & Kapla, M. (1985). Larval and adult visual pigments of the zebrafish, Brachydanio rerio. Vision Research, 25, 1569-1576.
    Neafsey, D.E., & Hartl, D.L. (2005). Convergent loss of an anciently duplicated, functionally divergent RH2 opsin gene in the fugu and Tetraodon pufferfish lineages. Gene, 350, 161-171.
    Nelson, J.S. (1994). Fishes of the world. New York: John Wiley & Sons, Inc. p. 630.
    Palacios, A.G., Varela, F.J., Srivastava, R., & Goldsmith, T.H. (1998). Spectral sensitivity of cones in the goldfish, Carassius auratus. Vision Research, 38, 2135-2146.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Trong, I.L., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., & Miyano, M. (2000). Crystal structure of rhodopsin: a G protein-coupled receptor. Science, 289, 739-745.
    Parry, J.W.L. & & Bowmaker, J.K. (2000) Visual pigment reconstitution in intact goldfish retina using synthetic retinaldehyde isomers. Vision Research, 40, 2241-2247.
    Parry, J.W.L., Carleton, K.L., Spady, T., Carboo, A., Hunt, D.M., & Bowmaker, J.K. (2005). Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Current Biology, 15, 1734-1739.
    Partridge, J.C., Arche, S.N., & Lythgoe, J.N. (1988). Visual pigments in the individual rods of deep-sea fishes. Journal of Comparative Physiology A, Sensory, Neural and Behavioral Physiology, 162, 543-550.
    Roesler, C.S. (1998). Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique. Limnology and Oceanography, 43, 1649-1660.
    Pointer, M.A., Cheng, C.H.C., Bowmaker, J.K., Parry, J.W.L., Soto, N., Jeffery, G., Cowing, J.A., & Hunt, D.M. (2005). Adaptations to an extreme environment: retinal organization and spectral properties of photoreceptors in Antarctic notothenioid fish. The Journal of Experimental Biology, 208, 2363-2376.
    Posada, D., & Crandall, K.A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817-818.
    Robinson, J., Schmitt, E.A., Harosi, F.I., Reece, R.J., & Dowling, J.E. (1993). Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization. Proceedings of the National Academy of Sciences of the United States of America, 90, 6009-6012.
    Saitou, L., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
    Sakmar, T.P., Franke, R.R., & Khorana, H.G. (1989). Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 86, 8309-8313.
    Sakmar, T.P., T.Menon, S., P.Marin, E., & Awad, E.S. (2002). Rhodopsin: Insights from recent structural studies. Annual Review of Biophysics and Biomolecular Structure, 31, 443-484.
    Shen, S.C., Lee, S.C., Shao, K.T., Mok, H.K., Chen, C.T., & Chen, C.H. (1993). Fishes of Taiwan. Taipei, Taiwan: National Taiwan University. p. 960. (in Chinese)
    Shi, Y., Radlwimmer, F. B., & Yokoyama, S. (2001) Molecular genetics and evolution of ultraviolet vision in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 98, 11731-11736.
    Siebeck, U.E., & Marshall, N.J. (2001). Ocular media transmission of coral reef fish - can coral reef fish see ultraviolet light? Vision Research, 41, 133-149.
    Sillman, A.J., Carver, J.K., & Loew, E.R. (1999). The photoreceptors and visual pigments in the retina of a boid snake, the ball python (Python regius). The Journal of Experimental Biology, 202, 1931-1938.
    Sillman, A.J., Johnson, J.L., & Loew, E.R. (2001). Retinal photoreceptors and visual pigments in Boa constrictor imperator. The Journal of Experimental Zoology, 290, 259-365.
    Spady, T.C., Seehausen, O., Loew, E.R., Jordan, R.C., Kocher, T.D., & Carleton, K.L. (2005). Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Molecular Biology and Evolution, 22, 1412-1422.
    Swofford, D.L. (2000). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.
    Takahashi, Y., & Ebrey, T.G. (2003). Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. Biochemistry, 42, 6025-6034.
    Takahashi, Y., & Yokoyama, S. (2005). Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis. Genetics, 171, 1153-1160.
    Takenaka, N., & Yokoyama, S. (2007). Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon. Gene, 399, 26-32.
    Thompson, J.D., Higgins, D.G., & Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680.
    Tsai, H.J., Shih, S.R., Kuo, C.M., & Li, L.K. (1994). Molecular cloning of common carp (Cyprinus carpio) rhodopsin cDNA. Comparative Biochemistry and Physiology. Part B: Biochemistry and Molecular Biology, 109, 81-88.
    Tzeng, C.S. (1986). Distribution of the freshwater fishes of Taiwan. Journal of Taiwan Museum, 39, 127-146.
    Wang, H.Y., Wang, C.F., Du, S.Y., & Lee, S.C. (2007). New insights on molecular systematics of opsariichthines based on cytochrome b sequencing. Journal of Fish Biology, 71, 18-32.
    Wang, J.T., M.C. Liu & L.S. Fang (1995). The reproductive biology of an endemic cyprinid, Zacco pachycephalus, in Taiwan. Environmental Biology of Fishes, 43, 135-143
    Wang, X.H., Li, J.B., & He, S.P. (2007). Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Molecular Phylogenetics and Evolution, 42, 157-170.
    Wilkie, S.E., Robinson, P.R., Cronin, T.W., Poopalasundaram, S., Bowmaker, J.K., & Hunt, D.M. (2000). Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochemistry, 39, 7895-7901.
    Yang, Z., Kumar, S., & Nei, M. (1995). A new method of inference of ancestral nucleotide and amino acid sequences. Genetics, 141, 1641-1650
    Yang, Z. (1997). PAML: a program for package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences, 15, 555-556.
    Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research, 9, 385-419.
    Yokoyama, S. (2002). Molecular evolution of color vision in vertebrates. Gene, 300, 68-79.
    Yokoyama, S., & Radlwimmer, F.B. (1998). The "Five-Sites" rule and the evolution of red and green color vision in Mammals. Molecular Biology and Evolution, 15, 560-567.
    Yokoyama, S., Takenaka, N., & Blow, N. (2007). A novel spectral tuning in the short wavelength-sensitive (SWS1 and SWS2) pigments of bluefin killifish (Lucania goodei). Gene, 396, 196-202.
    Yokoyama, S., & Yokoyama, R. (1996). Adaptive evolution of photoreceptors and visual pigments in vertebrates. Annual Review of Ecology and Systematics, 27, 543-567.
    Yokoyama, S., Zhang, H., Radlwimmer, F.B., & Blow, N.S. (1999). Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proceedings of the National Academy of Sciences of the United States of America, 96, 6279-6284.
    Zhukovsky, E.A., & Oprian, D.D. (1989). Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science, 246, 928-930.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE