研究生: |
陳弘文 Chen, Hong-Wen |
---|---|
論文名稱: |
碳化鈦瓷金雷射積層開發與液相燒結之研究 Study on Laser Additive Manufacturing and Liquid Phase Sintering of TiC cermets |
指導教授: |
葉均蔚
Yeh, Jien-Wei |
口試委員: |
李勝隆
Lee, Sheng-Long 洪健龍 Hung, Jian-Long 楊智超 Yang, Chih-Chau 蔡銘洪 Tsai, Ming-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 226 |
中文關鍵詞: | 碳化鈦 、雷射積層 、液相燒結 、超硬合金 |
外文關鍵詞: | TiC, liquid phase sintering, laser, cermet |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TiC瓷金主要由高硬度、高耐磨的碳化物以及提供適當韌性的金屬膠結相所組成,在工業上被廣泛運用在模具、車刀與耐磨工件上;雷射積層製造透過高能量雷射束將粉末熔融焊合,並且經由一層一層的堆疊,進而直接完成複雜形狀的立體工件。與傳統液相燒結相比,以雷射積層生產高品質的瓷金工件能夠節省大量的時間與後續加工成本,是近年來廣泛受到大家研究的題目。
本實驗主要使用成分TiC + Cr-Ni-Ti [1],經由噴霧造粒法 (spray drying granulation) 自行製作符合雷射機台使用的碳化鈦瓷金粉末,在雷射機台上則是使用工研院研發的粉床式雷射機台來進行碳化鈦瓷金的雷射積層,經由相關雷射參數的調控製作出高品質的碳化鈦瓷金。期望透過雷射製程中快速冷卻的特性來減少晶粒成長的發生,進一步改善試片的微結構及機械性質並探討其雷射參數的影響;此外,本研究也會與傳統液相燒結試片做比較,觀察微結構以及機械性質上的差異,研究兩者不同製程上的各項優劣。
TiC cermets which composed of carbides and metals, are widely used as cutting tools in industry. Additive manufacturing uses high intensity laser beam to fuse material layer by layer. Thus, the complex 3D structure could be directly built. Comparing with the traditional liquid phase sintering, laser additive manufacturing has great potential to produce cermets since it could save time and reduce costs.
In this work, TiC cermets are made with spray drying granulation and selective laser melting. The study of granulation method and laser parameter are mainly to produce high quality cermets. The microstructure and the mechanical properties are also investigated. By the way, the 3D printing specimens are compared with those fabricated by liquid phase sintering for further discussion.
[1] 林岳佑, TiC 與多元金屬燒結瓷金之開發研究, 國立清華大學材料科學工程研究所碩士論文. 2015.
[2] Zelinski, P., Cermets Get Assertive, in Modern Machine Shop. 2005, Gardner Business Media: Cincinnati.
[3] Cao, F., et al., Enhanced Thermal Stability of W‐Ni‐Al2O3 Cermet‐ Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors. Advanced Energy Materials, 2015. 5(2).
[4] Henrickson, J.F., et al., Structure and Properties of Sputtered Ta– Al2O3 Cermet Thin Films. Journal of Applied Physics, 1969. 40(13): pp. 5006-5014.
[5] Hobosyan, M.A., et al., Chemically activated combustion synthesis of MoSi2/Al cermet foams. Chemical Engineering Journal, 2011. 170(1): pp. 286-291.
[6] Pierson, H.O., Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps. 1996, Westwood, NJ: William Andrew Publishing.
[7] Exner, H.E., Physical and chemical nature of cemented carbides. International Metals Reviews, 1979. 24(1): pp. 149-173.
[8] Marques, B.J., C.M. Fernandes, and A.M.R. Senos, Sintering, microstructure and properties of WC-AISI304 powder composites. Journal of Alloys and Compounds, 2013. 562: pp. 164-170.
[9] Shi, Q., et al., Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Optics & Laser Technology, 2016. 84: pp. 9-22.
[10] Sánchez, J.M., et al., Effect of Ni powder characteristics on the consolidation of ultrafine TiMoCN cermets by means of SPS and HIP technologies. Materials Science and Engineering: A, 2009. 500(1–2): pp. 225-232.
[11] Xu, Q., et al., Comparison of Ti(C,N)-based cermets processed by hot-pressing sintering and conventional pressureless sintering. Journal of Alloys and Compounds, 2015. 619: pp. 538-543.
[12] Yang, Q., et al., Synthesis of ultrafine WC-10Co composite powders with carbon boat added and densification by sinter-HIP. International Journal of Refractory Metals and Hard Materials, 2016.
[13] Stevenson, W., Metal handbook. 9 ed. Vol. 7. 1985, Ohio: ASM.
[14] Thévenot, F., Boron carbide—A comprehensive review. Journal of the European Ceramic Society, 1990. 6(4): pp. 205-225.
[15] Basu, B., G.B. Raju, and A.K. Suri, Processing and properties of monolithic TiB2 based materials. International Materials Reviews, 2006. 51(6): pp. 352-374.
[16] Clark, H.K. and J.L. Hoard, The Crystal Structure of Boron Carbide. Journal of the American Chemical Society, 1943. 65(11): pp. 2115- 2119.
[17] Zimmermann, J.W., et al., Thermophysical Properties of ZrB2 and ZrB2–SiC Ceramics. Journal of the American Ceramic Society, 2008. 91(5): pp. 1405-1411.
[18] Bača, Ľ., et al., Microstructure evolution and tribological properties of TiB2/Ni–Ta cermets. Journal of the European Ceramic Society, 2012. 32(9): pp. 1941-1948.
[19] Li, G. and Z.S. Marta, The TiB2-based Fe-matrix composites fabricated using elemental powders in one step process by means of SHS combined with pseudo-HIP. International Journal of Refractory Metals and Hard Materials, 2014. 45: pp. 141-146.
[20] Zhang, Z.-H., et al., Low-temperature densification of TiB2 ceramic by the spark plasma sintering process with Ti as a sintering aid. Scripta Materialia, 2012. 66(3–4): pp. 167-170.
[21] Ji, W., et al., Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. Journal of the European Ceramic Society, 2015. 35(3): pp. 879-886.
[22] Wendel, J.A. and W.A. Goddard, The Hessian biased force field for silicon nitride ceramics: Predictions of thermodynamic and mechanical properties for α‐ and β‐Si3N4. The Journal of Chemical Physics, 1992. 97(7): pp. 5048-5062.
[23] Ettmayer, P. and W. Lengauer, The Story of Cermets. International Journal of Powder Metallurgy, 1989. 21(2): pp. 37-38.
[24] Mills, B., International Conference on Advances in Material and Processing TechnologiesRecent developments in cutting tool materials. Journal of Materials Processing Technology, 1996. 56(1): pp. 16-23.
[25] Andrén, H.-O., Microstructures of cemented carbides. Materials & Design, 2001. 22(6): pp. 491-498.
[26] Andrén, H.-O., Microstructure development during sintering and heat-treatment of cemented carbides and cermets. Materials Chemistry and Physics, 2001. 67(1–3): pp. 209-213.
[27] Mills, B., Recent developments in cutting tool materials. Journal of
materials processing technology, 1996. 56(1): pp. 16-23.
[28] Yasinskaya, G.A., The wetting of refractory carbides, borides, and nitrides by molten metals. Soviet Powder Metallurgy and Metal Ceramics, 1966. 5(7): pp. 557-559.
[29] Ettmayer, P. and W. Lengauer, The story of cermets. Powder Metall.
Int., 1989. 21(2): pp. 37-38.
[30] Ettmayer, P., et al., Ti(C,N) cermets — Metallurgy and properties.
International Journal of Refractory Metals and Hard Materials, 1995.
13(6): pp. 343-351.
[31] Exner, H., Physical and chemical nature of cemented carbides.
International Materials Reviews, 1979. 4(1): pp. 149-173.
[32] Richter, V. and M.v. Ruthendorf, On hardness and toughness of ultrafine and nanocrystalline hard materials. International Journal of Refractory Metals and Hard Materials, 1999. 17(1–3): pp. 141-152.
[33] Spriggs, G.E., Special Issue on Fine Grained HardmetalsA history of fine grained hardmetal. International Journal of Refractory Metals and Hard Materials, 1995. 13(5): pp. 241-255.
[34] Tracey, V.A., Nickel in hardmetals. International Journal of Refractory Metals and Hard Materials, 1992. 11(3): pp. 137-149.
[35] Exner, H.E. and J. Gurland, A Review of Parameters Influencing Some Mechanical Properties of Tungsten Carbide-cobalt Alloys. Powder Metallurgy, 1970. 13(25): pp. 13-31.
[36] Gopal S. Upadhayay, Cemented Tungsten Carbides Production, Properties, and Testing, 1998, Noyes publications, pp.95-98 (2008).
[37] Larry Greenemeier, 科學人雜誌—資訊科技, 臺灣遠流出版公司,六月刊, 2013.
[38] Zhai, Y., H. Galarraga, and D.A. Lados, Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM. Engineering Failure Analysis, 2016. 69: pp. 3-14.
[39] Karma, Detailed report on Laser Cusing, SLA, SLS and Electron Beam Melting. 2011.
[40] Andrew Kelley, Tungsten Carbide-Cobalt by Three Dimensional Printing, B.S. Mechanical Engineering, 1996.
[41] X. C. Wang, T. Laoui and J. Bonse, Int. Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation. Journal of Advanced Manufaturing Technology, 19 (2002) pp.351-357.
[42] Maeda, K. and T.H.C. Childs, Laser sintering (SLS) of hard metal powders for abrasion resistant coatings. Journal of Materials Processing Technology, 2004. 149(1-3): pp. 609-615.
[43] Kumar, S., Manufacturing of WC–Co moulds using SLS machine. Journal of Materials Processing Technology, 2009. 209(8): pp. 3840-3848.
[44] Yuxin Li, Effect of Ni contents on the microstructure and mechanical properties of TiC-Ni cermets obtained by direct laser fabrication, Int. Journal of Refractory Metals & Hard Materials, 27 (2009) pp.552-555.
[45] Dongdong Gu, Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM): Densification, growth mechanism and wear behavior, Composites Science and Technology, 71 (2011) pp.1612-1620.
[46] Uhlmann, E., A. Bergmann, and W. Gridin, Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting. Procedia CIRP, 2015. 35: pp. 8-15.
[47] Rahaman, M.N., Ceramic Processing and Sintering. 2003: Taylor & Francis.
[48] Porter, D.A., K.E. Easterling, and M.Y. Sherif, Phase transformations in metals and alloys. 2nd ed. 2009, Boca Raton: CRC Press.
[49] Young, T., An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 1805. 95: pp. 65-87.
[50] German, R.M., S. Farooq, and C.M. Kipphut, Kinetics of liquid sintering. Materials Science and Engineering: A, 1988. 105: pp. 215- 224.
[51] Onoda, G.Y. and L.L. Hench, Ceramic processing before firing. 1978, New York: John Wiley.
[52] Whittemore, J.W., Industrial Use of Plasticizers, Binders and Other Auxiliary Agents. American Ceramic Society Bulletin, 1944. 23: pp. 427-432.
[53] Lewis, J.A., Binder removal from ceramics. Annual Review of Materials Science, 1997. 27(1): pp. 147-173.
[54] Frage, N., N. Froumin, and M.P. Dariel, Wetting of TiC by non- reactive liquid metals. Acta Materialia, 2002. 50(2): pp. 237-245.
[55] 陳羽辰, WC與Al0.5CoCrCuFeNi燒結超硬合金之製程與機械性質研究, 國立清華大學材料科學工程研究所碩士論文, 2004.
[56] 邱品淞, 以機械合金法與雙盤研磨法製作WC/(Al-Co-Cr-Fe-Ni)超硬合金之開發研究, 國立清華大學材料科學工程研究所碩士論文, 2015.
[57] Bowker, Michael I. & P. Heinrich Stahl., Preparation of Water-Soluble Compounds through Salt Formation. In Camille Georges Wermuth, ed. The Practice of Medical Chemistry, pp. 747–766. Burlington, MA: Elsevier, p. 756. (2008).
[58] de Groot, P., Optical properties of alumina titanium carbide sliders used in rigid disk drives. Applied Optics, 1998. 37(28): pp. 6654-6663.
[59] Daimon, M. and A. Masumura, Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Applied Optics, 2007. 46(18): pp. 3811-3820.
[60] 王海滨, et al., WC-Co 复合粉的喷雾造粒及松装密度的影响因素, 中国有色金属学报, 2012. 22(11): pp. 3241-3248.
[61] 傅曉偉, 粉體流動性與填充率, 科學發展, 09(2015) : pp.22-23
[62] Zhou, X., et al., Balling phenomena in selective laser melted tungsten. Journal of Materials Processing Technology, 2015. 222: pp. 33-42.
[63] G. LEVI, M. Bamberger and W. D. Kaplan, Wetting Of Porous Titanium Carbonitride By Al-Mg-Si Alloys , Acta Materialia, 1999 19(10):pp. 3927-3934.
[64] Bo Cheng, Stress and deformation evaluations of scanning strategy effect in selective laser melting, Addive Manufacturing, 12(2016) 240-251.
[65] Porter, D.A., K.E. Easterling, and M.Y. Sherif, Phase transformations in metals and alloys. 2nd ed. 2009, Boca Raton: CRC Press.
[66] Ostwald, W., Analytische Chemie. 3rd ed. 1901, Engelmann, Leipzig.
[67] Vengrenovitch, R.D., On the ostwald ripening theory. Acta Metallurgica, 1982. 30(6): pp. 1079-1086.
[68] Chou, Y.T., Equilibrium of Linear Dislocation Arrays in Heterogeneous Materials. Journal of Applied Physics, 1966. 37(6): pp. 2425-2429.
[69] Cha, S.I., et al., Mechanical properties of WC–10Co cemented carbides sintered from nanocrystalline spray conversion processed powders. International Journal of Refractory Metals and Hard Materials, 2001. 19(4–6): pp. 397-403.
[70] Sigl, L.S. and H.F. Fischmeister, On the fracture toughness of cemented carbides. Acta Metallurgica, 1988. 36(4): pp. 887-897.
[71] Ravichandran, K.S., Fracture toughness of two phase WC-Co cermets. Acta Metallurgica et Materialia, 1994. 42(1): pp. 143-150.
[72] Furushima, R., et al., Relationship between hardness and fracture toughness in WC–FeAl composites fabricated by pulse current sintering technique. International Journal of Refractory Metals and Hard Materials, 2014. 42: pp. 42-46.
[73] Schubert, W.D., et al., Hardness to toughness relationship of fine-grained WC-Co hardmetals. International Journal of Refractory Metals and Hard Materials, 1998. 16(2): pp. 133-142.