研究生: |
楊育碩 |
---|---|
論文名稱: |
以田口法最佳化多孔矽奈米粉末合成參數以改善鋰離子電池陽極材料充放電性質 Using Taguchi method to optimize the synthesis processes of porous silicon nanoparticles as anode materials for lithium ion batteries. |
指導教授: | 蔡哲正 |
口試委員: |
林居南
顏光甫 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 鋰離子電池 、矽基陽極 、田口法 、多孔奈米材料 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
能量存儲系統已經成為用於解決石油危機的關鍵技術,而鋰離子電池具有較高的理論能量和功率密度,因此為相當有發展潛力的能量存儲系統之一。其中理離子電池中的矽基負極材料因為其高理論電容量而被廣泛研究,但因其充放電過程中會有300 %體積膨脹,造成電池循環壽命不佳。
本研究使用田口方法來使多孔二氧化矽奈米顆粒合成參數最佳化,以提高在鋰離子電池的循環壽命性能。其中二氧化矽合成中,存在CTACl/TEOS = 0.058的最佳比例以形成奈米顆粒的孔隙。且存在最佳TOEA/TEA = 0.25,以形成最小的顆粒。在鎂還原的製程中,對於循環壽命性能最好的參數是:外壓= 0.75 torr、Mg/SiO2 = 4、溫度= 625 oC、時間= 6小時。
將兩個最佳參數結合後,得到具有高表面積(394 m2/g)的矽奈米粉末以及decay百分比為40 %的電性表現。並將二氧化矽和成田口法中比表面積最大(L5)、中間(L2)以及最小(L8)分別利用L5參數還原作電性比較。最終我們得出結論,有較高孔隙率以及孔體積的奈米顆粒對於循環壽命表現的影響小於顆粒大小對電性表現的影響。
Energy storage system has become a critical technology for solving the oil crisis, and the lithium ion battery is one of the promising energy storage systems owing to the high theoretical energy and power density. Moreover, Silicon – based anode materials for lithium ion battery have been widely studied in recent years because the high specific capacities of silicon.
This study uses Taguchi method to optimize the synthesis processes of porous silicon nanoparticles to improve the cycle life performance in lithium ion batteries. In the processes of SiO2 synthesis, there is a best ratio of CTACl / TEOS, 0.058, to form pores in nanoparticles, and a ratio of TOEA / TEA to form minimum particles. In the processes of Mg reduction, the best parameters for cycle life performance are: Outer pressure = 0.75 torr, Mg / SiO2 = 4, temperature = 625 oC, time = 6 hr.
We conclude that the effect of porosity with large pore volume is less effective than that of particle size on the cycle life performance.
(1) Scrosati, B.; Garche, J.: Lithium batteries: Status, prospects and future. Journal of Power Sources2010, 195, 2419-2430.
(2) Kim, I.; Kumta, P. N.; Blomgren, G. E.: Si / TiN nanocomposites - Novel anode materials for Li-ion batteries. Electrochemical and Solid State Letters2000, 3, 493-496.
(3) Wilson, A. M.; Way, B. M.; Dahn, J. R.; Vanbuuren, T.: NANODISPERSED SILICON IN PREGRAPHITIC CARBONS. Journal of Applied Physics1995, 77, 2363-2369.
(4) Courtel, F. M.; Duncan, H.; Abu-Lebdeh, Y.: Beyond Intercalation: Nanoscale-Enabled Conversion Anode Materials for Lithium-Ion Batteries. 2012, 85-116.
(5) Moriga, T.; Watanabe, K.; Tsuji, D.; Massaki, S.; Nakabayashi, I.: Reaction Mechanism of Metal Silicide Mg2Si for Li Insertion. Journal of Solid State Chemistry2000, 153, 386-390.
(6) Roberts, G. A.; Cairns, E. J.; Reimer, J. A.: Magnesium silicide as a negative electrode material for lithium-ion batteries. Journal of Power Sources2002, 110, 424-429.
(7) Kim, I.-s.; Blomgren, G. E.; Kumta, P. N.: Si–SiC nanocomposite anodes synthesized using high-energy mechanical milling. Journal of Power Sources2004, 130, 275-280.
(8) Noh, J.-H.; Lee, K.-Y.; Lee, J.-K.: Electrochemical characteristics of phosphorus doped Si-C composite for anode active material of lithium secondary batteries. Transactions of Nonferrous Metals Society of China2009, 19, 1018-1022.
(9) Limthongkul, P.; Jang, Y. I.; Dudney, N. J.; Chiang, Y. M.: Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia2003, 51, 1103-1113.
(10) Limthongkul, P.; Jang, Y.-I.; Dudney, N. J.; Chiang, Y.-M.: Electrochemically-driven solid-state amorphization in lithium–metal anodes. Journal of Power Sources2003, 119-121, 604-609.
(11) Obrovac, M. N.; Christensen, L.: Structural Changes in Silicon Anodes during Lithium Insertion / Extraction. Electrochemical and Solid-State Letters2004, 7, A93.
(12) Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G.: Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces2010, 2, 3004-10.
(13) Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G.: A major constituent of brown algae for use in high-capacity Li-ion batteries. Science2011, 334, 75-9.
(14) Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z.-J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T.: Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries. The Journal of Physical Chemistry C2012, 116, 1380-1389.
(15) Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W.: Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater2011, 23, 4679-83.
(16) Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A. Z.; Wang, L. W.; Battaglia, V. S.; Yang, W.; Liu, G.: Toward an ideal polymer binder design for high-capacity battery anodes. Journal of the American Chemical Society2013, 135, 12048-56.
(17) Szczech, J. R.; Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science2011, 4, 56.
(18) Kim, H.; Han, B.; Choo, J.; Cho, J.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem Int Ed Engl2008, 47, 10151-4.
(19) Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A.: Silicon nanowire fabric as a lithium ion battery electrode material. Journal of the American Chemical Society2011, 133, 20914-21.
(20) Hu, L.; Wu, H.; Hong, S. S.; Cui, L.; McDonough, J. R.; Bohy, S.; Cui, Y.: Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Chem Commun (Camb)2011, 47, 367-9.
(21) Chen, X.; Li, X.; Ding, F.; Xu, W.; Xiao, J.; Cao, Y.; Meduri, P.; Liu, J.; Graff, G. L.; Zhang, J. G.: Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes. Nano Lett2012, 12, 4124-30.
(22) Vlad, A.; Reddy, A. L.; Ajayan, A.; Singh, N.; Gohy, J. F.; Melinte, S.; Ajayan, P. M.: Roll up nanowire battery from silicon chips. Proc Natl Acad Sci U S A2012, 109, 15168-73.
(23) Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y.: Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy & Environmental Science2012, 5, 7927.
(24) Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y.: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett2011, 11, 2949-54.
(25) Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J.: Silicon Nanotube Battery Anodes. Nano Letters2009, 9, 3844-3847.
(26) Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol2012, 7, 310-5.
(27) Wang, X. L.; Han, W. Q.: Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. ACS Appl Mater Interfaces2010, 2, 3709-13.
(28) Qu, Y.; Zhou, H.; Duan, X.: Porous silicon nanowires. Nanoscale2011, 3, 4060-8.
(29) Ge, M.; Rong, J.; Fang, X.; Zhou, C.: Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett2012, 12, 2318-23.
(30) Yan, N.; Wang, F.; Zhong, H.; Li, Y.; Wang, Y.; Hu, L.; Chen, Q.: Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Scientific reports2013, 3, 1568.
(31) Chen, D.; Mei, X.; Ji, G.; Lu, M.; Xie, J.; Lu, J.; Lee, J. Y.: Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew Chem Int Ed Engl2012, 51, 2409-13.
(32) Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y.: Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett2012, 12, 904-9.
(33) Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y.: A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett2012, 12, 3315-21.
(34) Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gosele, U.: Metal-assisted chemical etching of silicon: a review. Adv Mater2011, 23, 285-308.
(35) Möller, K.; Kobler, J.; Bein, T.: Colloidal Suspensions of Nanometer-Sized Mesoporous Silica. Advanced Functional Materials2007, 17, 605-612.
(36) Wang, J.; Sugawara-Narutaki, A.; Shimojima, A.; Okubo, T.: Biphasic synthesis of colloidal mesoporous silica nanoparticles using primary amine catalysts. Journal of colloid and interface science2012, 385, 41-7.
(37) Bao, Z.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z.; Abernathy, H. W., 3rd; Summers, C. J.; Liu, M.; Sandhage, K. H.: Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature2007, 446, 172-5.
(38) 陳鴻博: 以回應曲面法探討添加陽離子界面活性劑透過溶膠-凝膠法製備矽膠之影響. 中原大學.
(39) Chen, W.; Fan, Z.; Dhanabalan, A.; Chen, C.; Wang, C.: Mesoporous Silicon Anodes Prepared by Magnesiothermic Reduction for Lithium Ion Batteries. Journal of The Electrochemical Society2011, 158, A1055.