簡易檢索 / 詳目顯示

研究生: 陳尹芃
Chen, Yin-Peng
論文名稱: 興奮性突觸在小鼠視網膜節細胞上之空間分布
Spatial Distribution of Excitatory Synapses in Mouse Retinal Ganglion Cells
指導教授: 焦傳金
Chiao, Chuan-Chin
口試委員: 陳令儀
閔明源
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 46
中文關鍵詞: PSD95突觸間距樹突結構視網膜培養
外文關鍵詞: PSD95, synaptic spacing, dendritic structure, retina culture
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 視網膜節細胞以興奮性突觸接受雙極細胞訊號刺激,調控本身之生理特性。本篇
    研究將帶有PSD95-GFP 之質體隨機轉染至小鼠視網膜節細胞中,使特定節細胞
    樹突上的興奮性突觸位置表現綠色螢光蛋白,藉此分析各種形態之視網膜節細胞
    上的興奮性突觸空間分布情形。本篇研究發現,儘管視網膜節細胞的大小形態各
    異,但興奮性突觸在節細胞中的分布卻有一定的規律可循:(1)在一維的樹突
    結構上,興奮性突觸的主要間隔為1-2 μm。這代表在一定的作用範圍內,空間
    中的任一突觸的產生會降低其他突觸同時出現在此區域的機率。(2)對於形態不
    同的節細胞而言,興奮性突觸在二維空間上的分布卻非常相似。興奮性突觸在初
    級樹突結構上數量極少,但隨著與細胞本體的距離增加,突觸密度也隨之上升,
    並在樹突末端達到最高值。基於以上的定量分析,本篇研究提供了小鼠視網膜節
    細胞上興奮性突觸與樹突結構之關連性,這項研究將有助於瞭解興奮性突觸在空
    間上的分布會如何影響細胞的生理反應。


    Excitatory glutamatergic inputs from bipolar cells in part define the physiological
    properties of retinal ganglion cells. In this study, we investigate the distribution of
    excitatory synapses on various types of mouse retinal ganglion cells, by randomly
    transfecting cells with PSD95-GFP plasmids. Despite wide variation in the size and
    morphology of retinal ganglion cells, the expression of PSD95 puncta follows two
    general rules: (1) The PSD95 puncta are regularly spaced, in 1-2 μm interval, on local
    dendritic segments. Thus, the presence of an excitatory synapse creates an exclusion
    zone that rules out the presence of other synaptic inputs. (2) The spatial distribution of
    PSD95 puncta in a two-dimensional space is similar for most cell types. The
    excitatory synapses on primary dendrites are much less, and the density of excitatory
    inputs peaks at the edge of cell’s dendritic field. Mapping the distribution of synapses
    on retinal ganglion cells provides explicit structure information that facilitates the
    understanding of how distribution and localization of excitatory inhibitory inputs
    shape neuron’s responses.

    摘要…………………………………………………………………………………… i ABSTRACT……………………………………………………...………………….. ii ABBREVIATIONS…………………………………………………………...…….. iii CHATER 1. INTRODUCTION………………………………….………………….1 1-1 Neural Circuitry in the Retina………………………………………………. 1 1-2 Postsynaptic Organization of Excitatory Synapses…………………………. 3 1-3 Synapse Spacing, Dendritic Architecture, and Synaptic Integration……….. 6 1-4 Goals and Approaches……………………………………………………… 9 CHAPTER 2. MATERIALS AND METHODS…………………………….….... 10 2-1 Animals……………………………………………………………………. 10 2-2 Retinal Preparation………………………………………………………… 10 2-3 Plasmid Construction……………………………………………………… 11 2-4 Making Gene Gun Bullets………………………………………………… 12 2-5 Gene Gun Transfection……………………………………………………. 14 2-6 Retina Culture……………………………………………………………....14 2-7 Tissue Fixation…………………………………………………………….. 15 2-8 Image Acqusition………………………………………………………….. 15 2-9 Morphometric Characterization…………………………………………… 16 2-10 Image Analysis…………………………………………………………… 17 CHAPTER 3. RESULTS…………………………………..……………………… 19 3-1 Identification of Retinal Ganglion Cell Types…………………………….. 19 3-2 Excitatory Synaptic Inputs are Regularly Spaced Along the Dendrites of Retinal Ganglion Cells…………………………………………………….. 21 3-3 Distribution of Excitatory Synapses within the Receptive Field………….. 23 CHAPTER 4. DISCUSSION………………………………..…………………….. 25 4-1 Distribution of PSD95 on Retinal Ganglion Cells………………………… 25 4-2 Synaptic Inputs…………………………………………………………….. 27 4-3 Synaptic Composition and Synaptic Stregth………………………………..30 4-4 The Ratio of Inhibitory to Excitatory Inputs………………………………. 31 4-5 Conclusion………………………………………………………….............31 REFERENCES………………………………………………………..…………….33 TABLE………………………………………………………...…………………….36 FIGURES…………………………………………………...……………………….37

    Badea TC, Nathans J. 2004. Quantitative analysis of neuronal morphologies in the
    mouse retina visualized by using a genetically directed reporter. J Comp Neurol
    480: 331-351.
    Boycott BB, Wässle H. 1974. The morphological types of ganglion cells of the
    domestic cat’s retina. J Physiol 240: 397-419.
    Calkins DJ, Sterling P. 1996. Absence of spectrally specific lateral inputs to midget
    ganglion cells in primate retina. Nature 381:613-615.
    Calkins DJ, Tsukamoto Y, Sterling P. 1998. Microcircuitry and mosaic of a
    blue-yellow ganglion cell in the primate retina. J neurosci 18: 3373-3385.
    Carlin RK, Grab DJ, Cohen RS, Siekevitz P. 1980. Isolation and characterization of
    postsynaptic densities from various brain regions: enrichment of different types
    of postsynaptic densities. J Cell Biol 86: 831-845.
    Coombs J, Van Der List D, Wang GY, Chalupa LM. 2006. Morphological properties
    of mouse retinal ganglion cells. Neuroscience 140:123-136.
    Ebihara T, Kawabata I, Usui S, Sobue K, Okabe S. 2003. Synchronized formation and
    remodeling of postsynaptic densities: long-term visualization of hippocampal
    neurons expressing postsynaptic density proteins tagged with green fluorescent
    protein. J Neurosci 23: 2170-2181.
    Freed MA, Smith RG, Sterling P. 1992. Computational model of the on-alpha
    ganglion cell receptive field based on bipolar cell circuitry. Proc Natl Acad Sci
    89: 236-240.
    Gartland AJ, Detwiler PB. 2011. Correlated variations in the parameters that regulate
    dendritic calcium signaling in mouse retinal ganglion cells. J Neurosci 31:
    18353-18363.
    Hoshi H, Liu WL, Massey SC, Mills SL. 2009. ON inputs to the OFF layer: bipolar
    cells that break the stratification rules of the retina. J Neurosci 29: 8875-8883.
    Jacoby R, Stafford D, Kouyama N, Marshak D. 1996. Synaptic inputs to ON parasol
    ganglion cells in the primate retina. J Neurosci 16: 8041-8056.
    Jakobs TC, Koizumi A, Masland RH. 2008. The spatial distribution of glutamatergic
    inputs to dendrites of retinal ganglion cells. J Comp Neurol 510: 221-236.
    Jusuf PR, Martin PR, Grünert U. 2006. Synaptic connectivity in the midget
    parvocellualr pathway of primate central retina. J Comp Neurol 494: 260-274.
    Koizumi A, Jakobs TC, Masland RH. 2011. Regular mosaic of synaptic contacts
    among three retinal neurons. J Comp Neurol 519: 341-357
    Kong JH, Fish DR, Rockhill RL, Masland RH. 2005. Diversity of ganglion cells in
    the mouse retina: unsupervised morphological classification and its limits. J
    Comp Neurol 489: 293-310.
    Lin B, Martin PR, Solomon SG, Grünert U. 2000. Distribution of glycine receptor
    subunits on primate retinal ganglion cells: a quantitative analysis. Eur J Neurosci
    12: 4155-4170.
    Lin B, Martin PR, Grünert U. 2002. Expression and distribution of ionotropic
    glutamate receptor subunits on parasol ganglion cells in the primate retina. Vis
    Neurosci 19: 453-465.
    Lye MH, Jakobs TC, Masland RH, Koizumi A. 2007. Organotypic culture of adult
    rabbit retina. J Vis Exp 3: http://www.jove.com/index/details.stp?id=190, doi:
    10.3791/190.
    MacGillavry H, Kerr JM, Blanpied TA. 2011. Lateral organization of the postsynaptic
    density. Mol, Cell Neurosci 48: 321-331.
    MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH. 2004. The
    population of bipolar cells in the rabbit retina. J Comp Neurol 472: 73-86.
    Mainen ZF, Sejnowski TJ. 1996. Influence of dendritic structure on firing pattern in
    model neocotical neurons. Nature 382: 363-366.
    Malinow R, Malenka RC. 2002. AMPA receptor trafficking and synaptic plasticity.
    Annu Rev Neurosci 25: 103-126.
    Marshak D, Yamada ES, Bordt AS, Perryman WC. 2002. Synaptic inputs to an ON
    parasol ganglion cell in the macaque retina: a serial section analysis. Vis
    Neurosci 19: 299-305.
    McGuire B, Stevens JK, Sterling P. 1986. Microcircuitry of beta ganglion cells in cat
    retina. J Neurosci 6: 907-918.
    Megías M, Emri ZS, Freund TF, Gulyás AI. 2001. Total number and distribution of
    inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells.
    Neuroscience 3: 527-540.
    Morgan JL, Schubert T, Wong RO. 2008. Developmental patterning of glutamatergic
    synapses onto retinal ganglion cells. Neural Dev 3:8.
    Moritoh S, Tanaka KF, Jouhou H, Ikenaka K, Koizumi A. 2010. Organotypic tissue
    culture of adult rodent retina followed by particle-mediated acute gene transfer in
    vitro. PLoS One 9:e12917.
    Peichl L, Buhl EH, Boycott BB. 1987. Alpha ganglion cells in the rabbit retina. J
    Comp Neurol 263: 25-41.
    Peichl L. 1989. Alpha and delta ganglion cells in the rat retina. J Comp Neurol 286:
    120-139.
    Piskorwski RA, Chevaleyre V. 2012. Synaptic integration by different dendritic
    compartments of hippocampal CA1 and CA2 pyramidal neurons. Cell Mol Life
    Sci 69: 75-88.
    Renner M, Specht CG, Triller A. 2008. Molecular dynamics of postsynaptic receptors
    and scaffold proteins. Curr Opin Neurobiol 18: 532-540.
    Sala C, El-Husseini A. 2009. Postsynaptic specialization assembly. In Lemke G.
    Developmental neurobiology (pp. 495-501). Italy: Elsevier.
    Schubert T, Degen J, Willecke K, Hormuzdi SG, Monyer H, Weiler R. 2005.
    Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse
    retina. J Comp Neurol 485:191-201.
    Sheng M, Hoogenraad CC. 2007. The postsynaptic architecture of excitatory synapses:
    a more quantitative view. Annu Rev Biochem 76: 823-847.
    Sun W, Li N, He S. 2002. Large-scale morphological survey of mouse retinal
    ganglion cells. J Comp Neurol 451:115-126.
    Vaney DI. 1994. Territorial organization of direction-selective ganglion cells in rabbit
    retina. J Neurosci 14:6301-6316.
    Völgyi B, Abrams J, Paul DL, Bloomfield SA. 2005. Morphology and tracer coupling
    pattern of alpha ganglion cells in the mouse retina. J Comp Neurol 492:66-77.
    Völgyi B, Chheda S, Bloomfield SA. 2009. Tracer coupling patterns of the ganglion
    cell subtypes in the mouse retina. J Comp Neurol 512:664-687.
    Wässle H, Puller C, Müller F, Haverkamp S. 2009. Cone contacts, mosaics, and
    territories of bipolar cells in the mouse retina. J Neurosci 29: 106-117.
    Xin D, Bloomfield SA. 1997. Tracer coupling pattern of amacrine and ganglion cells
    in the rabbit retina. J Comp Neurol 383: 512-528.
    Xu Y, Vasudeva V, Vardi N, Sterling P, Freed MA. 2008. Different types of ganglion
    cell share a synaptic pattern. J Comp Neurol 507: 1871-1878.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE