簡易檢索 / 詳目顯示

研究生: 劉凌嘉
Liu, Lin-Chia
論文名稱: 陣列成長矽與矽化鈦異質接面之ㄧ維奈米結構製備與量測
Synthesis and Characterization of Pattern Growth Si, and Si/TiSi2 Heterostructure Junction Nanowire
指導教授: 周立人
Chou, Li-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 69
中文關鍵詞: 奈米線矽化鈦
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由在1000 ℃和1 atm 條件下,可利用金屬薄膜、矽基板以及
    金奈米顆粒,在1000 ℃和1 atm 條件下合成出矽奈米線。可調控之
    矽奈米線直徑或是成長方向可經由不同大小尺寸的金奈米顆粒做為
    催化劑和使用不同晶向的矽基板。剛產出的奈米材料的晶體結構、微
    結構、化學成分、光學的性質,可分別透過X 光繞射儀、穿透式電子
    顯微鏡、掃描穿透式電子顯微鏡、臨場穿透式電子顯微鏡去分析。另
    外也會將可控制成長方向和半徑的矽奈米線當成模板,利用四氯化鈦
    當成鈦的來源合成出矽與矽化鈦異質接面的奈米線。
    實驗結果發現,利用臨場穿透式電子顯微鏡觀測矽與矽化鈦異質
    接面的奈米線,在提供外加鈦來源的情形下,鈦與矽與矽化鈦異質接
    面的奈米線反應的結果與薄膜反應不同。此種二階段合成的矽與矽化
    鈦異質接面的奈米線,提供了一個製造功能性奈米元件,極具潛力與
    發展的合成方法。


    Content ................................................................................................................................................... I Acknowledgments ............................................................................................................................... III Abstract ................................................................................................................................................ IV 摘要 ....................................................................................................................................................... VI List of Acronyms and Abbreviations ................................................................................................. VII Chapter 1 ................................................................................................................................................ 1 Introduction ........................................................................................................................................... 1 1.1 Introduction of Nanomaterials ..................................................................................................... 1 1.2 Vapor-Based Growth Mechanism ................................................................................................. 5 1.2.1 Vapor-Liquid-Solid (VLS) Growth ..................................................................................... 5 1.2.2 Vapor-Solid Growth ............................................................................................................. 7 1.2.3 Oxide-Assisted Growth (OAG) ........................................................................................... 9 1.2.4 Carbothermal Growth ....................................................................................................... 10 1.2.5 Solid-Liquid-Solid (SLS) Growth Mechanism ................................................................. 11 1.3 Silicon ......................................................................................................................................... 12 1.4 Titanium Silicide ......................................................................................................................... 14 1.5 Motivation and Research Direction ............................................................................................ 16 Chapter 2 .............................................................................................................................................. 19 Experimental Procedures ..................................................................................................................... 19 2.1 Sample Preparation .................................................................................................................... 19 2.2 Heat Treatment........................................................................................................................... 20 2.3 Titanium Silicide Treatment of Silicon Nanowire ...................................................................... 21 2.4 Scanning Electronic Micrscopy (SEM) Analysis ....................................................................... 22 2.5 Transmission Electronic Microscopy (TEM) Analysis .............................................................. 22 2.5.1 Preparation of TEM sample .............................................................................................. 22 2.6 Glancing Angle Incidence XRD (GIXRD) Analysis .................................................................. 23 2.7 Energy Dispersion Spectrometer Analysis ................................................................................. 23 2.8 Field Emission Measurements ................................................................................................... 24 Chapter 3 .............................................................................................................................................. 25 Results and Discussion ......................................................................................................................... 25 3.1 The Morphology of Si nanowires ............................................................................................... 25 3.2 Structure and Composition Analysis .......................................................................................... 27 3.2.1 X-ray Diffraction ................................................................................................................ 27 3.2.2 HRTEM and EDX Analysis ............................................................................................... 27 3.3 The Effect of Growth substrate ................................................................................................... 28 3.4 The influence of Au droplet ........................................................................................................ 34 3.5 Growth Mechanism ..................................................................................................................... 36 3.6 Field Emission Measurements ................................................................................................... 38 3.7 The Formation of Titanium Silicide Nanowire ......................................................................... 41 3.7.1 The Morphology of Titanium Silicide Nanowire ............................................................. 41 3.7.2 Identification of the Crystal Structure ............................................................................. 44 3.8 The Synthesis of Hetrostructure C49 Titanium-Silicon Nanowires .......................................... 46 3.8.1 Morphology of Nanowires ................................................................................................. 46 3.8.2 Identification of Crystal Structure ................................................................................... 47 3.8.3 Microstructure Analysis .................................................................................................... 47 3.8.4 STEM Analysis ................................................................................................................... 49 3.9 Growth Mechanism ..................................................................................................................... 50 Chapter 4 .............................................................................................................................................. 59 Summary and Conclusions .................................................................................................................. 59 References ............................................................................................................................................ 60

    Chapter 1
    [1.1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature,
    354, (1991), pp.56-58.
    [1.2] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W.
    Kim, “Soft Solution Route to Directionally Grown ZnO
    Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet
    Laser,” Adv. Mater., 15, (2003), pp 1911–1914.
    [1.3] Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D.
    Chen, “TaSi2 Nanowires: A Potential Field Emitter and
    Interconnect,” Nano Lett., 6, (2006), pp 1637-1644.
    [1.4] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P.
    Yang, “Single-crystal Gallium Nitride Nanotubes,” Nature, 422,
    (2003), pp 599-602.
    [1.5] W. Wang, B. Zeng, J. Yang, B. Poudel, J. Huang, M. J. Naughton,
    and Z. Ren, “Aligned Ultralong ZnO Nanobelts and Their
    Enhanced Field Emission,” Adv. Mater., 18, (2006), pp
    3275–3278.
    [1.6] M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus,
    “Plasmon Excitation Modes in Nanowire Arrays,” J. Appl. Phys.,
    89, (2001), pp.2733-2736.
    [1.7] Yiying Wu, and Peidong Yang, “Germanium/Carbon
    61
    Core-Sheath Nanostructures,” Appl. Phys. Lett., 77, (2000),
    pp.43-45.
    [1.8] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and
    Ulrich G□sele, “Synthesis of Vertical High-Density Epitaxial
    Si(100) Nanowire Arrays on a Si(100) Substrate Using an
    Anodic Aluminum Oxide Template,” Adv. Mater., 19, (2007), pp
    917–920
    [1.9] J. H. Paek, T. Nishiwaki, M. Yamaguchi, and N. Sawaki,
    “MBE-VLS Growth of GaAs nanowires on (111) Si Substrate,”
    phys. stat. sol. (c), 5, (2008), pp 2740–2742.
    [1.10] S. A. Dayeh, D. P. R. Aplin, X. Zhou, P. K. L. Yu, E. T. Yu, and D.
    Wang “High Electron Mobility InAs Nanowire Field-Effect
    Transistors,” Small, 3, (2007), pp 326 – 332.
    [1.11] P. D. Yang, and C. M. Lieber, “Nanostructured high-temperature
    superconductors:Creation of Strong-pinning Columnar Defects
    in Nanorod/superconductor Composites,” J. Mater. Res., 12,
    (1997), pp 2981-2996.
    [1.12] B. D. Bao, Y. F. Chen, and N. Wang, “Formation of ZnO
    Nanostructures by a Simple Way of Thermal Evaporation,”
    Appl. Phys. Lett., 81, (2002), pp 757-759.
    [1.13] M. H. Huang, S. Mao, H. Feich, H.Yan, Y. Wu, H. Kind, E. Weber,
    R. Russo, and P. Yang, “Room-Temperature Ultraviolet
    62
    Nanowire Nanolasers,” Science, 292, (2001), pp 1897-1899.
    [1.14] Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin oxide
    Nanowires, Nanoribbons, and Nanotubes,” J. Phys. Chem. B,
    106, (2002), pp 1274-1279.
    [1.15] X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W.
    Meng, and L. D. Zhang, “Large-scale Synthesis of In2O3
    Nanowires,” App. Phys. A, 74, (2002), pp 437-439.
    [1.16] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee,
    G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kee, “Catalytic
    Growth of -Ga2O3 Nanowires by Arc Discharge,” Adv. Mater.,
    12, (2000), pp 746-750.
    [1.17] Y Y. W. Wang , C. H. Liang , G. Z. Wang , T. Gao , S. X. Wang , J.
    C. Fan, and L. D. Zhang , “Preparation and Characterization of
    Ordered Semiconductor CdO Nanowire Arrays,” J. Mater. Sci.
    Lett., 20, (2001), pp 1687-1689.
    [1.18] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Lead Oxide Nanobelts and
    Phase Transformation Induced by Electron Beam Irradiation,”
    Appl. Phys. Lett., 80, (2002), pp 309-311.
    [1.19] Younan Xia, Peidong Yang, Yugung Sun, Yiying Wu, Brain Mayers,
    Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan,
    “One-Dimensional Nanostructures: Synthesis, Characterization,
    and Applications,” Adv. Mater., 15, (2003), pp.353-389.
    63
    [1.20] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang,
    D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3
    Nanowires Prepared by Physical Evaporation,” Solid State
    Communications, 109, (1999), pp.677–682.
    [1.21] Y. Yao, F. Li, and S.T. Lee, “Oriented Silicon Nanowires on
    Silicon Substrates from Oxide-Assisted Growth and Gold
    Catalysts,” Chem. Phys. Lett., 406, (2005), pp.381-385.
    [1.22] F.M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gosele, D.D.
    Ma, and S.T. Lee “Analysis of Silicon Nanowires Grown by
    Combining SiO Evaporation with the VLS Mechanism,” J.
    Electrochem. Soc., 151, (2004), pp.472-475.
    [1.23] X.B Yan, T. Xu, S. Xu, G. Chen, Q.J. Xue, and S.R. Yang
    “Polymer-Assisted Synthesis of Aligned Amorphous Silicon
    Nanowires and their Core/Shell Structures with Au
    Nanoparticles,” Chem. Phys. Lett., 397, (2004), pp.128-132.
    [1.24] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H.
    Xi, and S. Q. Feng, “ Growth of Amorphous Silicon Nanowires
    via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett., 323,
    (2000), pp 224-228.
    [1.25] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S.
    Q. Feng, “Controlled Growth of Oriented Amorphous Silicon
    Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Physica
    E, 9, (2001), pp 305-309.
    [1.26] A.I. Hochbaum, R. Fan, R. He, and P.D. Yang, “Controlled
    Growth of Si Nanowire Arrays for Device Integration,” Nano.
    Lett., 5, (2005), pp.457-460.
    64
    [1.27] L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L.
    Long, U. Gosele, and T.Y. Tan, “Silicon Nanowhiskers Grown on
    <111> Si Substrates by Molecular-Beam Epitaxy,” Appl. Phys.
    Lett., 84, (2004), pp.4968-4971.
    [1.28] K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, and J. Zhu, “Aligned
    Single-Crystalline Si Nanowire Arrays for Photovoltaic
    Applications,” Small, 1, (2005), pp.51062-1067.
    [1.29] H.C. Hsu, W.W. Wu, H.F. Hsu, and L.J. Chen “Growth of
    High-Density Titanium Silicide Nanowires in a Single Direction
    on a Silicon Surface,” Nano. Lett., 7, (2007), pp.885-889.
    [1.30] B. Liu, Y. Wang, S. Dilts, T.S. Mayer, and S.E. Mohney,
    “Silicidation of Silicon Nanowires by Platinum,” Nano. Lett., 7,
    (2007), pp.818-824.
    [1.31] H.C. Hsu, H.F. Hsu, T.F. Chiang, K.F. Liao, and L.J. Chen “Effects
    of Substrate Temperature on the Initial Growth of Titanium
    Silicides on Si(111) ,” Jpn. J. App. Phys, 43, (2004), pp.4537-4540.
    [1.32] Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang, and Charles M.
    Lieber, “Epitaxial core-shell and core-multishell nanowire
    heterostructures,” Nature, 420, (2002), pp.57-61.
    [1.33] Yue Wu, Jie Xiang, Chen Yang, Wei Lu, and Charles M. Lieber,
    “Single-Crystal Metallic Nanowires and Metal/Semiconductor
    Nanowire Heterostructures,” Nature, 430, (2004), pp.61-65.
    [1.34] Zhaohui Zhong, Fang Qian, Deli Wang, and Charles M. Lieber,
    “Synthesis of p-Type Gallium Nitride Nanowires for Electronic
    and Photonic Nanodevices,” Nano Lett., 3, (2003), pp.343-346.
    65
    Chapter 3
    [3.1] R.Q. Zhang, Y. Lifshitz, and S.T. Lee, “Oxide-Assisted Growth of
    Semiconducting Nanowires,” Adv. Mater., 15, (2003), pp.635-640.
    [3.2] Y. Yao, F. Li, and S.T. Lee, “Oriented Silicon Nanowires on
    Silicon Substrates from Oxide-Assisted Growth and Gold
    Catalysts,” Chem. Phys. Lett., 406, (2005), pp.381-385.
    [3.3] F.M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gosele, D.D.
    Ma, and S.T. Lee “Analysis of Silicon Nanowires Grown by
    Combining SiO Evaporation with the VLS Mechanism,” J.
    Electrochem. Soc., 151, (2004), pp.472-475.
    [3.4] X.B Yan, T. Xu, S. Xu, G. Chen, Q.J. Xue, and S.R. Yang
    “Polymer-Assisted Synthesis of Aligned Amorphous Silicon
    Nanowires and their Core/Shell Structures with Au
    Nanoparticles,” Chem. Phys. Lett., 397, (2004), pp.128-132.
    [3.5] Y.Y Wong, M. Yahaya, M.M. Salleh, and B.Y. Majlis “Controlled
    Growth of Silicon Nanowires Synthesized vas
    Solid-Liquid-Solid Mechanism,” Sci. Technol. Adv. Mater., 6,
    (2005), pp.330-334.
    [3.6] F. Qian, Y. Li, S. Gradecak, D. Wang, C. Barrelet, and C. M. Lieber,
    “Gallium Nitride-Based Nanowire Radial Heterostructures for
    Nanophotonics,” Nano Lett., 4, (2004), pp 1975-1979.
    [3.7] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire
    Nanosensors for Highly Sensitive and Selective Detection of
    Biological and Chemical Species,” Science, 293, (2001), pp
    1289-1292.
    [3.8] X. D. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale
    Hexagonal-Patterned Growth of Aligned ZnO Nanorods for
    Nano-optoelectronics and Nanosensor Arrays,” Nano Lett., 4,
    (2004), pp 423-426.
    66
    [3.9] M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler,
    M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic
    Measurements in Single-Nanowire Silicon Solar Cells,” Nano
    Lett., 8, (2008), pp 710-714.
    [3.10] M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D.
    Chen, Y. W. Lan, and L. J. Chen, “Nitrogen-Doped Tungsten
    Oxide Nanowires: Low Temperature Synthesis on Si and the
    Electrical, Optical, and Field-Emission Properties,” Small, 3,
    (2007), pp 658-664.
    [3.11] M. T. Chang, L. J. Chou, C. H. Hsieh, Y. L. Chueh, Z. L. Wang, Y.
    Murakami, and D. Shindo, “Magnetic and Electrical
    Characterizations of the Half-Metallic Magnetite (Fe3O4)
    Nanowires,” Adv. Mater., 19, (2007), pp 2290-2294.
    [3.12] Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for Integrated
    Multicolor Nanophotonics,” Small, 1, (2005), pp 142-147.
    [3.13] A. Javey, S. Nam, R. S. Friedman, H. Yan, and C. M. Lieber,
    “Layer-by-Layer Assembly of Nanowires for
    Three-Dimensional, Multifunctional Electronics,” Nano Lett., 7,
    (2007), pp 773-777.
    [3.14] H.C. Hsu, W.W. Wu, H.F. Hsu, and L.J. Chen “Growth of
    High-Density Titanium Silicide Nanowires in a Single Direction
    on a Silicon Surface,” Nano. Lett., 7, (2007), pp.885-889.
    [3.15] H.C. Hsu, H.F. Hsu, T.F. Chiang, K.F. Liao, and L.J. Chen “Effects
    of Substrate Temperature on the Initial Growth of Titanium
    Silicides on Si(111) ,” Jpn. J. App. Phys, 43, (2004), pp.4537-4540.
    [3.16] T. Soubiron, R. Stiufiuc, L. Patout, D. Deresmes, B. Grandidier, D.
    Stievenard, J. Koble, M. Maier, “Transport Limitations and
    Schottky Barrier Height in Titanium Silicide Nanowires Grown
    on the Si(111) Surface,” App. Phys. Lett., 90, (2007), pp.102112.
    67
    [3.17] B. Liu, Y. Wang, S. Dilts, T.S. Mayer, and S.E. Mohney,
    “Silicidation of Silicon Nanowires by Platinum”, Nano. Lett., 7,
    (2007), pp.818-824.
    [3.18] M.X. Zhang and P.M. Kelly “Application of edge-to-edge
    matching model to understand the in-plane texture of TiSi2
    (C49) thin films on (001)Si,” surface Scripta Materialia 55 (2006)
    613–616
    [3.19] T. Xiao and Robert A. Wolkowb “Scanning tunneling microscopy
    characterization of low-profile crystalline TiSi2 microelectrodes
    on a Si (111) surface,” Appl. Phys. Lett. 86, 203101 (2005)
    [3.20] M.Bhaskaran1, S.Sriram1, “Characterization of C54 titanium
    silicide thin films by spectroscopy, microscopy and
    diffraction,”J. Phys. D: Appl. Phys. 40 (2007) 5213–5219
    [3.21] H.C.Hsu , W.W. Wu, H.F. Hsu, and L.J Chen,“Growth of
    High-Density Titanium Silicide Nanowires in a Single Direction
    on a Silicon Surface,” Nano Lett., Vol. 7, No. 4, 2007
    [3.22] Y. Zhu, D. Zhao, R. Li, and J. Liua_“Self-aligned TiSi2 /Si
    heteronanocrystal nonvolatile memory,” Appl. Phys. Lett. 88,
    103507 (2006)
    [3.23] Y. Z., B. Li, and J. Liua, G. F. Liu and J. A. Yarmoff “TiSi2 /Si
    heteronanocrystal metal oxide semiconductor field effect
    transistor memory,” Appl. Phys. Lett. 89, 233113 (2006)
    [3.24] Y. Zhu, B. Li, and J. Liua_“Fabrication and characterization of
    TiSi2 /Si heteronanocrystal metal oxidesemiconducto
    rmemories,” J. Appl. Phys. 101, 063702 (2007)
    [3.25] H.K.Lin , Y.F. Tzeng, C.H. Wang, N.H. Tai, I.N. Lin, C.Y. Lee, and
    H.T.Chiu, “Ti5Si3 Nanowire and Its Field Emission Property,”
    Chem. Mater., Vol. 20, No. 7, 2008
    [3.26] J. Du, P. Du,P. Hao,Y. Huang, Z. Ren, G. Han,W. Weng , and G.
    68
    Zhao “Growth Mechanism of TiSi Nanopins on Ti5Si3 by
    Atmospheric Pressure Chemical Vapor Deposition,”J. Phys.
    Chem. C 2007, 111, 10814-10817
    [3.27] R. J. Kematick and C. E. Myers “Thermodynamics of the Phase
    Formation of the Titanium Silicides,”Chem. Mater. 1996, 8,
    287-291
    [3.28] L.J. Chen “Solid state amorphization in metal/Si systems,”
    Materials Science and Engineering, R29 (2000) 115-152
    [3.29] T.H. Yang, S.L. Cheng, L.J. Chen “Autocorrelation function
    analysis of phase formation in the initial stage of interfacial
    reactions of multilayered titanium–silicon thin films,” Thin Solid
    Films 469–470 (2004) 513–517
    [3.30] R. Pretorius“Concentration-controlled phase selection of silicide
    formation during reactive deposition,” Appl. Phys. Lett., Vol. 74,
    No. 21, 24 May 1999
    [3.31] T. H. Yang, K. S. Chi, and L. J. Chena_“Formation of Ti silicide
    nanocrystals in the amorphous interlayers in ultrahigh vacuum
    deposited Ti thin films on (001) Si,”J. Appl. Phys. 98, 034302
    (2005)
    [3.32] K.C. Lu, W.W. Wu, H.W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen,
    and K. N. Tu,“In situ Control of Atomic-Scale Si Layer with
    Huge Strain in the Nanoheterostructure NiSi/Si/NiSi through
    Point Contact Reaction,” Nano Lett., Vol. 7, No. 8, 2007
    [3.33] Y.C. Chou, W.W. Wu, S.L. Cheng, B.Y. Yoo, N. Myung, L J. Chen,
    and K. N. Tu“In-situ TEM Observation of Repeating Events of
    Nucleation in Epitaxial Growth of Nano CoSi2 in Nanowires of
    Si,” Nano Lett., Vol. 8, No. 8, 2008
    [3.34] A.M. Mohammad, S. Dey, K.K. Lew, J.M. Redwing, and S.E.
    Mohney “Fabrication of Cobalt Silicide Nanowire Contacts to
    69
    Silicon Nanowires,”, J. Electrochem. Soc., 354, (2003),
    pp.577-580.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE