研究生: |
陳盈宇 Chen, Ying-Yu |
---|---|
論文名稱: |
開發HDI-PF127/HA溫感性注射式水膠系統作為抗癌藥物載體之研究 Development of HDI-PF127/HA thermo-sensitive injectable hydrogel system for anti-cancer drug delivery |
指導教授: |
王子威
Wang, Tzu-Wei |
口試委員: |
孫瑞昇
董國忠 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 注射式水膠 、溫感性 、Pluronic F127 、透明質酸 、藥物釋放載體 |
外文關鍵詞: | injectable hydrogel, thermosensitive, Pluronic F127, hyaluronic acid, drug delivery carrier |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
注射式水膠是一種新穎的智慧型材料,在生理環境刺激下能由液態轉變為凝膠態。在藥物釋放應用領域,可用來作為藥物載體,藉由生理環境的變化控制藥物釋放的情形;在組織工程方面也可應用為生物支架材料,利用注射的方法將支架材料打入人體,達到減少手術傷口大小而降低患者術後其他併發症的可能性。因此,注射式水膠無論在藥物釋放或組織工程領域上,都具有極大的應用價值。Pluronic F127是一種可利用溫度來控制成膠性質的智慧型高分子,但受限於Pluronic F127所形成的水膠本身機械強度不佳,因而降低Pluronic F127水膠在工程上的應用性。而透明質酸是一種由雙醣類組成富含於細胞外間質的天然高分子,近年來由於其良好的生物相容性廣泛的被應用在美容、食品保健和醫藥等用途上。本研究的目的是希望利用Pluronic F127/HA製備出溫感性的水膠,並擁有較佳的機械穩定性與生物相容性,當作藥物釋放載體應用在癌症治療上。
實驗發現利用hexamethylene diisocyanate (HDI) 將Pluronic F127的高分子鏈跟鏈末端做連結,會使得Pluronic F127在成膠時所具有的微胞結構更加穩定,經由流變特性分析証實HDI-Pluronic F127 (HDI-PF127) 仍然具有隨溫度變化進行液態/凝膠態相轉換的能力而且其臨界成膠濃度約為5 % (w/w)左右,相較於Pluronic F127臨界成膠濃度需在15% (w/w)大為降低許多,可減少毒性產生。細胞毒性分析結果也顯示此複合水膠材料具有良好生物相容性。本研究除了探討此複合型溫感性水膠物理和化學特性之外,也實際利用此水膠包覆抗癌藥物,例如:Doxorubicin和Paclitaxol,觀察其在藥物包覆上的廣度並觀察其藥物釋放的情況作為癌症治療上的應用。結果顯示,此水膠包覆藥物系統,可達到緩慢釋放的效果,使抗癌藥物的釋放時間延長為一個月以上,並能有效的抑制乳癌細胞的增生。未來依據需要可藉由調整水膠的濃度大小控制其釋放速率。
總合整體實驗,於本研究中所製備的HDI-Pluronic F127/hyaluronic acid (HDI-PF127/HA) 水膠可在低溫維持液態,並藉由控制濃度使其能在接近人體體溫時形成凝膠態且具有生物相容性。此外,HDI-PF127/HA水膠具緩慢的降解速率,能夠將包覆的抗癌藥物維持長時間穩定釋放速率。未來此水膠可局部注射並侷限在需要治療的腫瘤位置,減少藥物毒性並達到緩慢釋放的抗癌治療效果。因此,此複合型溫感性水膠在藥物釋放與組織工程領域上具有相當應用潛力。
Injectable hydrogel is a novel smart material which can undergo sol-gel phase transition by the stimulation of physiological factors or environmental stimuli. In the field of pharmaceutics, it can be used as a drug carrier that can control the drug release rate by the alteration of physiological environment; in the field of tissue engineering, it can be applied as a scaffold that can be implanted into the defect site by the method of injection. Pluronic F127 is a smart polymer which has the property of sol-gel in transition response to temperature but was limited by the weak mechanical strength. Hyaluronic acid is a linear natural polymer composed of repeating disaccharides found in the extracellular matrix and broadly applied in the field of cosmetology, health food, and medicine. The purpose of this study is to develop a thermosensitive hydrogel composed of Pluronic F127 and hyaluronic acid with improved mechanical stability and biocompatibility as a controlled drug delivery carrier for cancer therapy.
The results showed that the introduction of hexamethylene diisocyanate (HDI) as the extender for Pluronic F127 polymer chains made the micelles more stable. Furthermore, HDI-Pluronic F127 still maintained sol-gel transition property with broader temperature range and the critical gelation concentration was also decreased. The cell viability test showed the HDI-Pluronic F127/ hyaluronic acid hydrogel had favorable biocompatibility. With appropriate physical and chemical properties of this thermosensitive hydrogel, anticancer drugs such as doxorubicin and paclitaxol were incorporated to investigate the drug release profile and anticancer treatment effect. The results showed that the slow controlled release of anticancer drugs can be achieved over one month and significantly inhibit the proliferation of human breast tumor cells. By adjusting the concentration of hydrogels, the release profile can also be manipulated if desired.
In brief, the HDI-Pluronic F127/hyaluronic acid composite hydrogel prepared in this study can maintain solution form at low temperature and become gelation as the temperature increase to body temperature. It was found that the hydrogel was biocompatible and had the slow release property for anticancer drugs. Therefore, the HDI-Pluronic F127/hyaluronic acid hydrogel has considerable potential applications in the field of controlled drug delivery in the future.
REFERENCE
1. Temenoff, J.S. and A.G. Mikos, Biomaterials: The Intersection of Biology and Materials Science. 2008.
2. Wichterle, O. and D. Lim, Hydrophilic Gels for Biological Use. Nature, 1960. 185(4706): p. 117-118.
3. Kuo, C.K. and P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001. 22(6): p. 511-521.
4. Kim, M.R. and T.G. Park, Temperature-responsive and degradable hyaluronic acid/Pluronic composite hydrogels for controlled release of human growth hormone. Journal of Controlled Release, 2002. 80(1-3): p. 69-77.
5. Jia, X., et al., Synthesis and Characterization of in Situ Cross-Linkable Hyaluronic Acid-Based Hydrogels with Potential Application for Vocal Fold Regeneration. Macromolecules, 2004. 37(9): p. 3239-3248.
6. Zan, J., et al., Preparation and properties of crosslinked chitosan thermosensitive hydrogel for injectable drug delivery systems. Journal of Applied Polymer Science, 2006. 101(3): p. 1892-1898.
7. Hoffman, A.S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2002. 54(1): p. 3-12.
8. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2001. 53(3): p. 321-339.
9. Jeong, B. and A. Gutowska, Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends in Biotechnology, 2002. 20(7): p. 305-311.
10. Nanjawade, B., F. Manvi, and A. Manjappa, In situ-forming hydrogels for sustained ophthalmic drug delivery. Journal of Controlled Release, 2007. 122(2): p. 119-134.
11. Hoare, T.R. and D.S. Kohane, Hydrogels in drug delivery: Progress and challenges☆. Polymer, 2008. 49(8): p. 1993-2007.
12. Mayol, L., et al., A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: Rheological, mucoadhesive and in vitro release properties. European Journal of Pharmaceutics and Biopharmaceutics, 2008. 70(1): p. 199-206.
13. Dadsetan, M., et al., A stimuli-responsive hydrogel for doxorubicin delivery. Biomaterials, 2010. 31(31): p. 8051-8062.
14. Klouda, L. and A.G. Mikos, Thermoresponsive hydrogels in biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2008. 68(1): p. 34-45.
15. Alarcon, C.d.l.H., S. Pennadam, and C. Alexander, Stimuli responsive polymers for biomedical applications. Chemical Society Reviews, 2005. 34(3): p. 276.
16. Jeong, B., S.W. Kim, and Y.H. Bae, Thermosensitive sol-gel reversible hydrogels. Advanced Drug Delivery Reviews, 2002. 54(1): p. 37-51.
17. Ruelgariepy, E., In situ-forming hydrogels-review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 58(2): p. 409-426.
18. Gupta, P., K. Vermani, and S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today, 2002. 7(10): p. 569-579.
19. Nettles, D.L., et al., Photocrosslinkable Hyaluronan as a Scaffold for Articular Cartilage Repair. Annals of Biomedical Engineering, 2004. 32(3): p. 391-397.
20. Cho, Y.I., et al., In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan–doxorubicin conjugates. European Journal of Pharmaceutics and Biopharmaceutics, 2009. 73(1): p. 59-65.
21. Lee, H. and T.G. Park, Photo-crosslinkable, biomimetic, and thermo-sensitive pluronic grafted hyaluronic acid copolymers for injectable delivery of chondrocytes. Journal of Biomedical Materials Research Part A, 2009. 88A(3): p. 797-806.
22. Ifkovits, J.L. and J.A. Burdick, Review: Photopolymerizable and Degradable Biomaterials for Tissue Engineering Applications. Tissue Engineering, 2007. 13(10): p. 2369-2385.
23. Nguyen, K.T. and J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002. 23(22): p. 4307-4314.
24. Weiss, P., et al., Hydrogels for Cartilage Tissue Engineering. 2010: p. 247-268.
25. Mortensen, K. and J.S. Pedersen, Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules, 1993. 26(4): p. 805-812.
26. Chiappetta, D.A. and A. Sosnik, Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2007. 66(3): p. 303-317.
27. Zhang, W., et al., Enhanced antitumor efficacy by Paclitaxel-loaded Pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. European Journal of Pharmaceutics and Biopharmaceutics, 2010. 75(3): p. 341-353.
28. Shachaf, Y., M. Gonen-Wadmany, and D. Seliktar, The biocompatibility of Pluronic®F127 fibrinogen-based hydrogels. Biomaterials, 2010. 31(10): p. 2836-2847.
29. Mei, L., H. Sun, and C. Song, Local delivery of modified paclitaxel-loaded poly(ε-caprolactone)/pluronic F68 nanoparticles for long-term inhibition of hyperplasia. Journal of Pharmaceutical Sciences, 2009. 98(6): p. 2040-2050.
30. Wang, Y., et al., Difunctional Pluronic copolymer micelles for paclitaxel delivery: Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. International Journal of Pharmaceutics, 2007. 337(1-2): p. 63-73.
31. Alexandridis, P. and T. Alan Hatton, Poly(ethylene oxide)---poly(propylene oxide)---poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995. 96(1-2): p. 1-46.
32. Rassing, J. and D. Attwood, Ultrasonic velocity and light-scattering studies on the polyoxyethylene--polyoxypropylene copolymer Pluronic F127 in aqueous solution. International Journal of Pharmaceutics, 1982. 13(1): p. 47-55.
33. Zhou, Z. and B. Chu, Light-scattering study on the association behavior of triblock polymers of ethylene oxide and propylene oxide in aqueous solution. Journal of Colloid and Interface Science, 1988. 126(1): p. 171-180.
34. Brown, W., et al., Micelle and gel formation in a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer in water solution: dynamic and static light scattering and oscillatory shear measurements. The Journal of Physical Chemistry, 1991. 95(4): p. 1850-1858.
35. Jørgensen, E.B., et al., Effects of Salts on the Micellization and Gelation of a Triblock Copolymer Studied by Rheology and Light Scattering. Macromolecules, 1997. 30(8): p. 2355-2364.
36. Mortensen, K. and W. Brown, Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solution. The influence of relative block size. Macromolecules, 1993. 26(16): p. 4128-4135.
37. Cohn, D., Improved reverse thermo-responsive polymeric systems. Biomaterials, 2003. 24(21): p. 3707-3714.
38. He, C., S.W. Kim, and D.S. Lee, In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. Journal of Controlled Release, 2008. 127(3): p. 189-207.
39. Safety Assessment of Poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, Poloxamer 105 Benzoate, and Poloxamer 182 Dibenzoate as Used in Cosmetics. International Journal of Toxicology, 2008. 27(2): p. 93-128.
40. Li, B., et al., Acute toxicity test of a new pharmaceutical adjuvant: Poloxamer 407. Chinese Pharmaceutical Journal, 1998. 9: p. 111-112.
41. Alakhov, V., et al., Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids and Surfaces B: Biointerfaces, 1999. 16(1-4): p. 113-134.
42. Laurent, T. and J. Fraser, Hyaluronan. The FASEB Journal, 1992. 6(7): p. 2397-2404.
43. AKMAL, et al., The effects of hyaluronic acid on articular chondrocytes. Vol. 87. 2005, London, ROYAUME-UNI: British Editorial Society of Bone and Joint Surgery. 7.
44. Evanko, S., et al., Hyaluronan-dependent pericellular matrix☆. Advanced Drug Delivery Reviews, 2007. 59(13): p. 1351-1365.
45. Banerji, S., et al., Structures of the Cd44–hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nature Structural & Molecular Biology, 2007. 14(3): p. 234-239.
46. Toole, B., Hyaluronan in morphogenesis. Seminars in Cell & Developmental Biology, 2001. 12(2): p. 79-87.
47. Hou, Q., P.A. De Bank, and K.M. Shakesheff, Injectable scaffolds for tissue regeneration. Journal of Materials Chemistry, 2004. 14(13): p. 1915.
48. Kretlow, J., L. Klouda, and A. Mikos, Injectable matrices and scaffolds for drug delivery in tissue engineering☆. Advanced Drug Delivery Reviews, 2007. 59(4-5): p. 263-273.
49. Wei, G., et al., Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. Journal of Controlled Release, 2002. 83(1): p. 65-74.
50. Matthew, J.E., et al., Effect of mammalian cell culture medium on the gelation properties of Pluronic® F127. Biomaterials, 2002. 23(23): p. 4615-4619.
51. Lin, C.-C. and A.T. Metters, Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 2006. 58(12-13): p. 1379-1408.