簡易檢索 / 詳目顯示

研究生: 蘇毓軒
Su, Yu-Hsuan
論文名稱: 釩系聚陰離子及氧化物材料與環保果膠於鹼金屬離子電池應用
Application of Vanadium-Based Polyanionic and Oxide Materials with Eco-Friendly Pectin in Alkali Metal-Ion Batteries
指導教授: 吳茂昆
Wu, Maw-Kuen
張廖貴術
Chang Liao, Kuei-Shu
口試委員: 林志明
Lin, Chih-Ming
馬遠榮
Ma, Yuan-Ron
吳孟真
Wu, Phillip
唐宏怡
Tang, hong yi
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 224
中文關鍵詞: Li3VO4Li3V2(PO4)3Na3V2(PO4)3果膠黏結劑回收贋電容
外文關鍵詞: Li3VO4, Li3V2(PO4)3, Na3V2(PO4)3, Pectin binder, Recycle, Pseudocapacitive
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為應對全球能源危機、資源枯竭與氣候變遷帶來的多重挑戰,本研究致力於開創全新能源存儲解決方案,通過開發基於釩的聚陰離子與氧化物材料,結合環保果膠於鹼金屬離子電池的應用,探索高效能與可持續性技術的未來願景。在當前電動車普及、再生能源大規模推廣以及全球減碳政策驅動下,能源儲存技術已成為實現碳中和的關鍵支柱。本研究聚焦於解決傳統電池技術對稀有金屬資源的依賴及回收再利用的困境,通過設計高能量密度、長循環壽命且可回收的電池材料,顯著提升儲能技術的經濟性與環境友好性。作為新一代電池技術的核心,這項研究不僅為未來電動車和智能電網提供可靠的能源解決方案,還為實現全球能源系統的可持續轉型提供了關鍵支撐,推動綠色科技創新,助力構建無碳未來,開啟人類文明在能源領域的全新篇章。
    在本研究中,發現以果膠為黏結劑的 Li3VO4 (LVO) 負極能顯著提升鋰離子電池性能。與傳統 PVDF 黏結劑相比,果膠黏結劑提升了 LVO 的比容量,達到 570 mAh/g(電流密度為 0.2 A/g),並延長了循環壽命。LVO-果膠系統在循環過程中顯示出一致的容量增長,並且在高電流密度下的性能優於 PVDF 系統,這歸因於其較低的界面阻抗和改善的離子遷移能力。電化學研究證實,在脫鋰過程中存在顯著的贋電容效應,實現快速且以表面控制為主的鋰離子儲存。該贋電容效應對於將電池與超級電容器性能結合具有關鍵作用,且此效應僅出現在脫鋰過程中,其具體機制仍在探索中。此外,LVO-果膠電極表現出極佳的可回收性,透過水洗和檸檬酸處理等環保方法,可回收 90% 的活性材料。回收的材料在結構和電化學性能上保持完整性,在後續循環中可實現完全鋰化。這種結合了性能增強、高功率密度和可持續再生的特性,突顯了果膠黏結劑在推動環保高性能電池技術發展中的潛力。
    在本研究中,Li3V2(PO4)3 (LVPO) 和 Na3V2(PO4)3 (NVPO) 分別被合成作為鋰離子與鈉離子電池的正極材料。LVPO 採用單斜晶結構,而 NVPO 則具 NASICON 框架的菱形結構,這些結構差異對電化學性能產生了顯著影響。在鋰離子電池中,LVPO 可在 3.0 V 至 4.3 V 的穩定電壓範圍內循環,實現兩個鋰離子的可逆嵌入與脫出,並在 300 次循環中保持 120 mAh/g 的容量。在 1 V 下,LVPO 負極可實現 95 mAh/g 的容量並穩定循環。在鈉離子電池中,NVPO 可在 3.8 V 下達到 98 mAh/g 的容量,且在 2000 次循環後保持 80% 的容量。NVPO 的 NASICON 結構確保了均勻的鈉離子沉積,減少枝晶形成並支持長期循環穩定性。在更寬的電壓範圍內,LVPO 和 NVPO 的容量可分別提升至 250 mAh/g 和 150 mAh/g。然而,LVPO 的穩定性受到枝晶形成與大量電解液消耗的限制。NVPO 的較低成核過電位實現了均勻沉積並改善了循環穩定性,使其成為優先考慮耐用性的應用的理想選擇。
    在高電壓下,Li3V2(PO4)3、Na3V2(PO4)3 和 Li2NaV2(PO4)3 表現出擴散控制行為,這是由其框架內的離子傳輸引發的相變驅動所致。在低電壓下,LVPO 和 Li2NaV2(PO4)3則呈現贋電容行為,其特徵是快速、可逆的氧化還原反應,以及以固溶機制為主的過程,能在無顯著結構變化的情況下促進鋰離子的快速動態響應。相比之下,由於較大的鈉離子移動速度較慢,NVPO 表現出擴散受限的行為,這限制了其在晶格內的快速傳輸。這些研究結果強調了在這些材料中容量與穩定性之間的權衡,並突顯了結構和離子特性在影響電池性能中的關鍵作用。


    To address the global energy crisis, resource depletion, and climate change, this study develops vanadium-based polyanionic and oxide materials combined with eco-friendly pectin for alkali metal-ion batteries. By overcoming the limitations of traditional battery technologies, such as reliance on scarce resources and recycling challenges, it aims to create high-energy-density, long-cycle-life, and sustainable solutions. This research supports the transition to carbon neutrality by providing reliable energy storage for electric vehicles and smart grids, driving innovation toward a greener, more sustainable future.

    Pectin binders in Li3VO4 (LVO) anodes enhance lithium-ion battery performance by improving specific capacity to 570 mAh/g at 0.2 A/g and extending cycle life compared to PVDF binders. The LVO-pectin system shows a consistent capacity increase during cycling and excels under high current densities, attributed to reduced surface resistance and improved ion mobility. Electrochemical studies confirm a pronounced pseudocapacitive effect during delithiation, enabling fast, surface-controlled Li⁺ storage, though its mechanism is still under investigation. LVO-pectin electrodes also demonstrate exceptional recyclability, with 90% of the active material recoverable using eco-friendly methods, retaining structural and electrochemical integrity. This highlights the potential of pectin-based binders for advancing sustainable, high-performance battery technologies.

    In this study, Li3V2(PO4)3 (LVPO) and Na3V2(PO4)3 (NVPO) were synthesized as cathode materials for lithium-ion and sodium-ion batteries. LVPO adopts a monoclinic structure, while NVPO features a rhombohedral NASICON framework, significantly affecting their electrochemical performance. LVPO demonstrates stable cycling (3.0 V to 4.3 V), achieving 120 mAh/g over 300 cycles, and 95 mAh/g at 1 V as an anode. NVPO achieves 98 mAh/g at 3.8 V with 80% retention over 2000 cycles, with its NASICON structure enabling uniform sodium-ion deposition and long-term stability. Wider potential ranges enhance capacities to 250 mAh/g for LVPO and 150 mAh/g for NVPO, though LVPO stability is compromised by dendrites and electrolyte consumption. Reduced nucleation overpotential in NVPO improves uniform deposition and cycling stability, making it suitable for durability-focused applications.

    At high voltages, Li3V2(PO4)3, Na3V2(PO4)3, and Li2Na V2(PO4)3 exhibit diffusion-controlled behavior due to phase transitions from ion transport. At low voltages, LVPO and Li2Na V2(PO4)3 show pseudocapacitive behavior, facilitating rapid lithium-ion dynamics via reversible redox reactions, while NVPO demonstrates diffusion-limited behavior due to slower sodium-ion mobility. These findings underscore the trade-offs between capacity and stability, emphasizing the importance of structural and ionic properties in battery performance

    Table of Contents Abstract i 摘要 iii Acknowledgments v Table of Contents vii List of Figures x List of Tables xx Chapter 1 Introduction 1 1.1 Current Status and Policy Implications 1 1.2 Applications of Battery in future 4 1.2.1 Energy Storage 6 1.2.2 Electric Vehicles (EVs) 7 1.2.3 Grid Stabilization 9 1.3 Battery for a sustainable future 11 1.3.1 Alkali ion battery 12 1.3.2 Eco-friendly binder 15 Chapter 2 Literature Review 17 2.1 Introduction to ion batteries 17 2.1.1 Lithium-ion battery electrode material 20 2.1.2 Sodium-ion battery electrode material 30 2.1.3 Comparison Between LIB and SIB 37 2.2 Vanadium-Based Materials Li3VO4 41 2.3 Vanadium-Based Polyanionic Materials 45 2.4 Lithium Vanadium Phosphate Li3V2(PO4)3 47 2.4.1 Structure of Li3V2(PO4)3 48 2.4.2 Electrochemical performance of Li3V2(PO4)3 52 2.5 Sodium Vanadium Phosphate Na3V2(PO4)3 57 2.5.1 Structure of Na3V2(PO4)3 57 2.5.2 Electrochemical performance of Na3V2(PO4)3 58 2.6 Binders in ion-batteries 61 2.6.1 Potential applications of pectin in batterie 64 2.7 Pseudocapacitance 69 2.7.1 Pseudocapacitance mechanism 69 Chapter 3 Experimental Methods 74 3.1 Materials Synthesis and Preparation 74 3.1.1 Synthesis of Li3VO4 75 3.1.2 Regeneration process of Li3VO4 76 3.1.3 Synthesis of Li3V2(PO4)3 76 3.1.4 Synthesis of Na3V2(PO4)3 77 3.1.5 Electrode preparation and battery assembly 77 3.2 Characterization Techniques 79 3.2.1 X-ray Diffraction Analysis (XRD) 79 3.2.2 Scanning Electron Microscope (SEM) 81 3.2.3 Transmission Electron Microscope (TEM) 83 3.2.4 X-ray Photoelectron Spectroscopy (XPS) 85 3.2.5 X-ray Absorption Spectroscopy (XAS) 86 3.3 Electrochemical Techniques 88 3.3.1 Electrochemical Charge and Discharge Processes 88 3.3.2 Electrochemical Impedance Spectroscopy (EIS) 89 3.3.3 Distribution of Relaxation Times (DRT) 95 3.3.4 Cyclic Voltammetry (CV) 99 3.3.5 Calculation and analysis of pseudocapacitance 102 Chapter 4 Results and Discussion 106 4.1 A green recyclable Li3VO4-pectin electrode exhibiting pseudocapacitive effect as an advanced anode for lithium-ion battery 106 4.1.1 Regeneration of Li3VO4-pectin 133 4.1.2 Summary 138 4.2 Vanadium-based polyanionic materials with eco-friendly pectin in alkali metal-ion batteries 140 4.2.1 Materials characteristic 141 4.2.1.1 Characteristics of monoclinic LVPO 141 4.2.1.2 Characteristics of rhombohedral NVPO 144 4.2.2 Electrochemical properties 146 4.2.2.1 Electrochemical Properties of monoclinic LVPO 146 4.2.2.2 Electrochemical Properties of rhombohedral NVPO 156 4.2.3 Comparative analysis of Li3V2(PO4)3 and Na3V2(PO4)3 160 4.2.3.1 SEM of LVPO and NVPO after cycles 160 4.2.3.2 Cyclic voltammetry of LVPO and NVPO 162 4.2.3.3 XPS of LVPO and NVPO in specific voltages 168 4.2.3.4 DRT analysis of LVPO and NVPO 174 4.2.3.5 Theoretical and practical energy density 176 4.2.4 Rhombohedral Li2NaV2(PO4)3 via ion exchange from Na3V2(PO4)3 178 4.2.5 Structural comparison (In-situ XRD) 186 4.2.5.1 Monoclinic Li3V2(PO4)3 186 4.2.5.2 Rhombohedral Na3V2(PO4)3 190 4.2.6 Summary 193 Reference 196

    Reference
    1. Erbach, G. and L. Jensen, Fit for 55 package. EPRS, European Parliament, 2022.
    2. Wang, Y., et al., Recent progress on the recycling technology of Li-ion batteries. Journal of Energy Chemistry, 2021. 55: p. 391-419.
    3. Zhao, Y., et al., A review on battery market trends, second-life reuse, and recycling. Sustainable Chemistry, 2021. 2(1): p. 167-205.
    4. Fichtner, M., et al., Rechargeable batteries of the future—the state of the art from a BATTERY 2030+ perspective. Advanced Energy Materials, 2022. 12(17): p. 2102904.
    5. Dong, F., et al., Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries. Resources, Conservation and Recycling, 2022. 177: p. 106002.
    6. Fetting, C., The European green deal. ESDN Report, December, 2020. 2(9).
    7. Dai, H., et al., Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends. Renewable and Sustainable Energy Reviews, 2021. 138: p. 110480.
    8. Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
    9. Choi, S. and G. Wang, Advanced lithium‐ion batteries for practical applications: technology, development, and future perspectives. Advanced Materials Technologies, 2018. 3(9): p. 1700376.
    10. Lieskoski, S., J. Tuuf, and M. Björklund-Sänkiaho, Techno-Economic Analysis of the Business Potential of Second-Life Batteries in Ostrobothnia, Finland. Batteries 2024, 10, 36. 2024.
    11. Kuronen, K., Next generation battery technologies for stationary energy storage. 2024.
    12. Pillot, C. The rechargeable battery market and main trends 2018–2030. in 36th annual international battery seminar & exhibit. avicenne energy. 2019.
    13. Fleischmann, J., et al., Battery 2030: Resilient, sustainable, and circular. McKinsey & Company, 2023: p. 2-18.
    14. He, X., et al., Well-to-wheels emissions, costs, and feedstock potentials for light-duty hydrogen fuel cell vehicles in China in 2017 and 2030. Renewable and Sustainable Energy Reviews, 2021. 137: p. 110477.
    15. Yuan, M., et al., The bidding strategies of large-scale battery storage in 100% renewable smart energy systems. Applied Energy, 2022. 326: p. 119960.
    16. Haram, M.H.S.M., et al., Feasibility of utilising second life EV batteries: Applications, lifespan, economics, environmental impact, assessment, and challenges. Alexandria Engineering Journal, 2021. 60(5): p. 4517-4536.
    17. Xu, C., et al., Future greenhouse gas emissions of automotive lithium-ion battery cell production. Resources, Conservation and Recycling, 2022. 187: p. 106606.
    18. Paulikas, D., et al., Life cycle climate change impacts of producing battery metals from land ores versus deep-sea polymetallic nodules. Journal of Cleaner Production, 2020. 275: p. 123822.
    19. Hannan, M.A., et al., Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. Journal of Energy Storage, 2021. 42: p. 103023.
    20. Olabi, A., et al., Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy, 2022. 254: p. 123987.
    21. Waseem, M., et al., Battery technologies and functionality of battery management system for EVs: Current status, key challenges, and future prospectives. Journal of Power Sources, 2023. 580: p. 233349.
    22. Liu, W., T. Placke, and K. Chau, Overview of batteries and battery management for electric vehicles. Energy Reports, 2022. 8: p. 4058-4084.
    23. Sanguesa, J.A., et al., A review on electric vehicles: Technologies and challenges. Smart Cities, 2021. 4(1): p. 372-404.
    24. Deng, J., et al., Electric vehicles batteries: requirements and challenges. Joule, 2020. 4(3): p. 511-515.
    25. Khalid, A., A. Stevenson, and A.I. Sarwat, Overview of technical specifications for grid-connected microgrid battery energy storage systems. IEEE Access, 2021. 9: p. 163554-163593.
    26. Choi, D., et al., Li-ion battery technology for grid application. Journal of Power Sources, 2021. 511: p. 230419.
    27. Qin, Y., et al., Lithium-ion batteries under pulsed current operation to stabilize future grids. Cell Reports Physical Science, 2022. 3(1).
    28. Tian, Y., et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chemical reviews, 2020. 121(3): p. 1623-1669.
    29. Liu, D.-H., et al., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews, 2020. 49(15): p. 5407-5445.
    30. Jafta, C.J., Grid scale energy storage: The alkali-ion battery systems of choice. Current Opinion in Electrochemistry, 2022. 36: p. 101130.
    31. Zhang, W., Y. Liu, and Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Science advances, 2019. 5(5): p. eaav7412.
    32. Kim, H., et al., Next-generation cathode materials for non-aqueous potassium-ion batteries. Trends in Chemistry, 2019. 1(7): p. 682-692.
    33. Palomares, V., et al., Update on Na-based battery materials. A growing research path. Energy & Environmental Science, 2013. 6(8): p. 2312-2337.
    34. Wang, L., et al., A superior low-cost cathode for a Na-ion battery. Angewandte chemie, 2013. 125(7).
    35. Ma, Y., J. Ma, and G. Cui, Small things make big deal: Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Materials, 2019. 20: p. 146-175.
    36. Liu, C., et al., A promising cathode for Li-ion batteries: Li3V2 (PO4) 3. Energy Storage Materials, 2016. 4: p. 15-58.
    37. Peled, E. and S. Menkin, SEI: past, present and future. Journal of The Electrochemical Society, 2017. 164(7): p. A1703.
    38. Wang, A., et al., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Computational materials, 2018. 4(1): p. 15.
    39. An, S.J., et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016. 105: p. 52-76.
    40. Yamada, A., S.-C. Chung, and K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes. Journal of the electrochemical society, 2001. 148(3): p. A224.
    41. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
    42. Li, W., S. Lee, and A. Manthiram, High‐nickel NMA: a cobalt‐free alternative to NMC and NCA cathodes for lithium‐ion batteries. Advanced materials, 2020. 32(33): p. 2002718.
    43. Kim, U.-H., et al., Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries. ACS energy letters, 2019. 4(2): p. 576-582.
    44. He, W., et al., Challenges and recent advances in high capacity Li‐rich cathode materials for high energy density lithium‐ion batteries. Advanced Materials, 2021. 33(50): p. 2005937.
    45. Chandan, P., et al., Voltage fade mitigation in the cationic dominant lithium-rich NCM cathode. Communications Chemistry, 2019. 2(1): p. 120.
    46. Yu, H.L., et al., Modulating the Voltage Decay and Cationic Redox Kinetics of Li‐Rich Cathodes via Controlling the Local Electronic Structure. Advanced Functional Materials, 2022. 32(24): p. 2112394.
    47. Genevois, C., et al., Insight into the atomic structure of cycled lithium-rich layered oxide Li1. 20Mn0. 54Co0. 13Ni0. 13O2 using HAADF STEM and electron nanodiffraction. The Journal of Physical Chemistry C, 2015. 119(1): p. 75-83.
    48. Luo, K., et al., Charge-compensation in 3 d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nature chemistry, 2016. 8(7): p. 684-691.
    49. Thackeray, M., et al., Electrochemical extraction of lithium from LiMn2O4. Materials Research Bulletin, 1984. 19(2): p. 179-187.
    50. Kim, J.-H., et al., Comparative study of LiNi0. 5Mn1. 5O4-δ and LiNi0. 5Mn1. 5O4 cathodes having two crystallographic structures: Fd 3̄ m and P 4332. Chemistry of materials, 2004. 16(5): p. 906-914.
    51. Su, Y.-H., et al., Lithium-ion battery with high-voltage LiNi0. 5-xFexMn1. 5O4/pectin electrode material. Journal of Energy Storage, 2024. 101: p. 113767.
    52. Qiao, Y., et al., Synthesis of plate-like Li3V2 (PO4) 3/C as a cathode material for Li-ion batteries. Journal of Power Sources, 2011. 196(20): p. 8706-8709.
    53. Rui, X., et al., Li3V2 (PO4) 3 cathode materials for lithium-ion batteries: A review. Journal of Power Sources, 2014. 258: p. 19-38.
    54. Huang, H., et al., Nanostructured composites: a high capacity, fast rate Li3V2 (PO4) 3/carbon cathode for rechargeable lithium batteries. Advanced Materials, 2002. 14(21): p. 1525-1528.
    55. Hwang, J.-Y., S.-T. Myung, and Y.-K. Sun, Sodium-ion batteries: present and future. Chemical Society Reviews, 2017. 46(12): p. 3529-3614.
    56. Ma, X., H. Chen, and G. Ceder, Electrochemical properties of monoclinic NaMnO2. Journal of The Electrochemical Society, 2011. 158(12): p. A1307.
    57. Stoyanova, R., et al., Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. Journal of Solid State Chemistry, 2010. 183(6): p. 1372-1379.
    58. Yabuuchi, N., et al., Research development on sodium-ion batteries. Chemical reviews, 2014. 114(23): p. 11636-11682.
    59. Wang, S., et al., All organic sodium‐ion batteries with Na4C8H2O6. Angewandte Chemie International Edition, 2014. 53(23): p. 5892-5896.
    60. Peng, J., et al., Prussian blue analogues for sodium‐ion batteries: past, present, and future. Advanced Materials, 2022. 34(15): p. 2108384.
    61. Moreau, P., et al., Structure and stability of sodium intercalated phases in olivine FePO4. Chemistry of Materials, 2010. 22(14): p. 4126-4128.
    62. Oh, S.-M., et al., Reversible NaFePO4 electrode for sodium secondary batteries. Electrochemistry communications, 2012. 22: p. 149-152.
    63. Lu, Z., et al., Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proceedings of the National Academy of Sciences, 2022. 119(40): p. e2210203119.
    64. Tian, Z., et al., Electrolyte solvation structure design for sodium ion batteries. Advanced Science, 2022. 9(22): p. 2201207.
    65. Nayak, P.K., et al., From lithium‐ion to sodium‐ion batteries: advantages, challenges, and surprises. Angewandte Chemie International Edition, 2018. 57(1): p. 102-120.
    66. Huang, Y., et al., Electrode materials of sodium-ion batteries toward practical application. ACS Energy Letters, 2018. 3(7): p. 1604-1612.
    67. Newman, G.H. and L.P. Klemann, Ambient temperature cycling of an Na‐TiS2 cell. Journal of The Electrochemical Society, 1980. 127(10): p. 2097.
    68. Pahari, D., P. Verma, and S. Puravankara, Are Na-ion batteries nearing the energy storage tipping point?–Current status of non-aqueous, aqueous, and solid-sate Na-ion battery technologies for sustainable energy storage. Journal of Energy Storage, 2022. 56: p. 105961.
    69. Zhao, L., et al., Engineering of sodium-ion batteries: Opportunities and challenges. Engineering, 2023. 24: p. 172-183.
    70. Yu, S.H., et al., Conversion reaction‐based oxide nanomaterials for lithium ion battery anodes. Small, 2016. 12(16): p. 2146-2172.
    71. Lin, F., et al., Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nature communications, 2014. 5(1): p. 3358.
    72. McDowell, M.T., et al., 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium‐ion batteries. Advanced materials, 2013. 25(36): p. 4966-4985.
    73. Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
    74. Wang, G., et al., Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2000. 306(1-2): p. 249-252.
    75. Ong, S.P., et al., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy & Environmental Science, 2011. 4(9): p. 3680-3688.
    76. Kumar Sen, U., A. Shaligram, and S. Mitra, Intercalation anode material for lithium ion battery based on molybdenum dioxide. ACS Applied Materials & Interfaces, 2014. 6(16): p. 14311-14319.
    77. Kalnaus, S., K. Rhodes, and C. Daniel, A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. Journal of Power Sources, 2011. 196(19): p. 8116-8124.
    78. Jiang, Y. and J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2019. 2(1): p. 30-37.
    79. Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597-1614.
    80. Asakura, R., et al., Insights into the Charge Storage Mechanism of Li3VO4 Anode Materials for Li‐Ion Batteries. ChemElectroChem, 2020. 7(9): p. 2033-2041.
    81. Sun, Y., et al., Novel Li3VO4 Nanostructures Grown in Highly Efficient Microwave Irradiation Strategy and Their In‐Situ Lithium Storage Mechanism. Advanced Science, 2022. 9(3): p. 2103493.
    82. Ren, X., et al., 3D porous Li3VO4@ C composite anodes with ultra-high rate capacity for lithium-ion capacitors. Electrochimica Acta, 2020. 355: p. 136819.
    83. Kang, T., et al., Ag embedded Li3VO4 as superior anode for Li-ion batteries. Journal of The Electrochemical Society, 2019. 166(3): p. A5295.
    84. Ni, S., et al., Approaching the theoretical capacity of Li3VO4 via electrochemical reconstruction. Advanced Materials Interfaces, 2016. 3(1): p. 1500340.
    85. Zhang, W.-J., Structure and performance of LiFePO4 cathode materials: A review. Journal of Power Sources, 2011. 196(6): p. 2962-2970.
    86. Lv, Z., et al., Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: Toward high-energy and high-power applications. Journal of Energy Chemistry, 2021. 55: p. 361-390.
    87. Barker, J., M. Saidi, and J. Swoyer, Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4 F. Journal of the Electrochemical Society, 2003. 150(10): p. A1394.
    88. Chung, S.-C., et al., Rhombohedral NASICON-type Na x Fe 2 (SO 4) 3 for sodium ion batteries: comparison with phosphate and alluaudite phases. Journal of Materials Chemistry A, 2018. 6(9): p. 3919-3925.
    89. Liu, Y., et al., Insight into the Multirole of Graphene in Preparation of High Performance Na2+ 2 x Fe2–x (SO4) 3 Cathodes. ACS Sustainable Chemistry & Engineering, 2018. 6(12): p. 16105-16112.
    90. Qiu, S., et al., NASICON-type Na3Fe2 (PO4) 3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy, 2019. 64: p. 103941.
    91. Zhang, S.D., et al., Advancing to 4.6 V Review and Prospect in Developing High‐Energy‐Density LiCoO2 Cathode for Lithium‐Ion Batteries. Small Methods, 2022. 6(5): p. 2200148.
    92. Jian, Z., et al., Carbon-coated rhombohedral Li 3 V 2 (PO 4) 3 as both cathode and anode materials for lithium-ion batteries: electrochemical performance and lithium storage mechanism. Journal of Materials Chemistry A, 2014. 2(47): p. 20231-20236.
    93. Yang, J., et al., Interface-controlled rhombohedral Li3V2 (PO4) 3 embedded in carbon nanofibers with ultrafast kinetics for Li-ion batteries. The Journal of Physical Chemistry Letters, 2020. 11(10): p. 4059-4069.
    94. Choi, D., et al., Formation of effective carbon composite structure for improving electrochemical performances of rhombohedral Li3V2 (PO4) 3 as both cathode and anode materials for lithium ion batteries. Journal of Electroanalytical Chemistry, 2023. 928: p. 117076.
    95. Gaubicher, J., et al., Rhombohedral form of Li3V2 (PO4) 3 as a cathode in Li-ion batteries. Chemistry of materials, 2000. 12(11): p. 3240-3242.
    96. Morcrette, M., et al., In Situ X-Ray Diffraction during Lithium Extraction from Rhombohedral and Monoclinic Li3 V 2 (PO 4) 3. Electrochemical and solid-state letters, 2003. 6(5): p. A80.
    97. Burba, C.M. and R. Frech, Vibrational spectroscopic studies of monoclinic and rhombohedral Li3V2 (PO4) 3. Solid State Ionics, 2007. 177(39-40): p. 3445-3454.
    98. Yin, S.-C., et al., Electrochemical property: structure relationships in monoclinic Li3-y V2 (PO4) 3. Journal of the American Chemical Society, 2003. 125(34): p. 10402-10411.
    99. Howard, W.F. and R.M. Spotnitz, Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. Journal of power sources, 2007. 165(2): p. 887-891.
    100. Patoux, S., et al., A comparative structural and electrochemical study of monoclinic Li3Fe2 (PO4) 3 and Li3V2 (PO4) 3. Journal of Power Sources, 2003. 119: p. 278-284.
    101. Cahill, L., et al., 7Li NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2 (PO4) 3. The Journal of Physical Chemistry B, 2006. 110(14): p. 7171-7177.
    102. Yang, G., et al., Crystal structure and electrochemical performance of Li3V2 (PO4) 3 synthesized by optimized microwave solid-state synthesis route. Electrochimica acta, 2010. 55(11): p. 3669-3680.
    103. Yin, S.-C., et al., Li2. 5V2 (PO4) 3: a room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2 (PO4) 3. Chemistry of materials, 2004. 16(8): p. 1456-1465.
    104. Yin, S.-C., et al., Charge ordering in lithium vanadium phosphates: electrode materials for lithium-ion batteries. Journal of the American Chemical Society, 2003. 125(2): p. 326-327.
    105. Van der Ven, A., J. Bhattacharya, and A.A. Belak, Understanding Li diffusion in Li-intercalation compounds. Accounts of chemical research, 2013. 46(5): p. 1216-1225.
    106. Tang, Y., et al., Li2NaV2 (PO4) 3: A novel composite cathode material with high ratio of rhombohedral phase. Journal of power sources, 2013. 227: p. 199-203.
    107. Ni, Q., et al., An extremely fast charging Li3V2 (PO4) 3 cathode at a 4.8 V cutoff voltage for Li-ion batteries. ACS Energy Letters, 2020. 5(6): p. 1763-1770.
    108. Qiao, Y., et al., The low and high temperature electrochemical performances of Li3V2 (PO4) 3/C cathode material for Li-ion batteries. Journal of Power Sources, 2012. 199: p. 287-292.
    109. Han, H., et al., ZrO2-coated Li3V2 (PO4) 3/C nanocomposite: A high-voltage cathode for rechargeable lithium-ion batteries with remarkable cycling performance. Ceramics International, 2015. 41(7): p. 8779-8784.
    110. Kalaga, K., et al., Doping stabilized Li3V2 (PO4) 3 cathode for high voltage, temperature enduring Li-ion batteries. Journal of Power Sources, 2018. 390: p. 100-107.
    111. Kim, S., et al., Electrochemical and structural investigation of the mechanism of irreversibility in Li3V2 (PO4) 3 cathodes. The Journal of Physical Chemistry C, 2016. 120(13): p. 7005-7012.
    112. Wu, Q., et al., Improving LiNixCoyMn1− x− yO2 cathode electrolyte interface under high voltage in lithium ion batteries. Nano Select, 2020. 1(1): p. 111-134.
    113. Zhang, X., et al., Revisiting Li 3 V 2 (PO 4) 3 as an anode–an outstanding negative electrode for high power energy storage devices. Journal of Materials Chemistry A, 2014. 2(42): p. 17906-17913.
    114. Mao, W.-f., et al., Configuration of li-ion vanadium batteries: Li3V2 (PO4) 3 (cathode)‖ Li3V2 (PO4) 3 (anode). ECS Electrochemistry Letters, 2013. 2(7): p. A69.
    115. Jian, Z., et al., Superior electrochemical performance and storage mechanism of Na3V2 (PO4) 3 cathode for room‐temperature sodium‐ion batteries. Advanced Energy Materials, 2013. 3(2): p. 156-160.
    116. Thangavel, R., et al., Understanding the structural phase transitions in Na3V2 (PO4) 3 symmetrical sodium‐ion batteries using synchrotron‐based X‐ray techniques. Small Methods, 2022. 6(2): p. 2100888.
    117. Chen, M., et al., NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nature Communications, 2019. 10(1): p. 1480.
    118. Chen, S., et al., Challenges and perspectives for NASICON‐type electrode materials for advanced sodium‐ion batteries. Advanced Materials, 2017. 29(48): p. 1700431.
    119. Jiang, Y., et al., Highly reversible Na storage in Na3V2 (PO4) 3 by optimizing nanostructure and rational surface engineering. Advanced Energy Materials, 2018. 8(16): p. 1800068.
    120. Yang, Z., et al., High performance cathode material based on Na3V2 (PO4) 2F3 and Na3V2 (PO4) 3 for sodium-ion batteries. Energy Storage Materials, 2020. 25: p. 724-730.
    121. Li, S., et al., The electrochemical exploration of double carbon-wrapped Na3V2 (PO4) 3: towards long-time cycling and superior rate sodium-ion battery cathode. Journal of Power Sources, 2017. 366: p. 249-258.
    122. Akcay, T., et al., Na3V2 (PO4) 3─ A Highly Promising Anode and Cathode Material for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021. 4(11): p. 12688-12695.
    123. Qin, T., et al., Design of functional binders for high-specific-energy lithium-ion batteries: from molecular structure to electrode properties. Industrial Chemistry & Materials, 2024. 2(2): p. 191-225.
    124. Zou, F. and A. Manthiram, A review of the design of advanced binders for high‐performance batteries. Advanced Energy Materials, 2020. 10(45): p. 2002508.
    125. Saal, A., T. Hagemann, and U.S. Schubert, Polymers for battery applications—active materials, membranes, and binders. Advanced Energy Materials, 2021. 11(43): p. 2001984.
    126. Zhong, X., et al., Binding mechanisms of PVDF in lithium ion batteries. Applied surface science, 2021. 553: p. 149564.
    127. Liu, Z., et al., Interfacial chemistry of vinylphenol-grafted PVDF binder ensuring compatible cathode interphase for lithium batteries. Chemical Engineering Journal, 2022. 446: p. 136798.
    128. Lee, K., et al., Toxicity of N-methyl-2-pyrrolidone (NMP): teratogenic, subchronic, and two-year inhalation studies. Fundamental and Applied Toxicology, 1987. 9(2): p. 222-235.
    129. Jönsson, B. and B. Åkesson, Human experimental exposure to N-methyl-2-pyrrolidone (NMP): toxicokinetics of NMP, 5-hydroxy-N-methyl-2-pyrrolidone, N-methylsuccinimide and 2-hydroxy-N-methylsuccinimide (2-HMSI), and biological monitoring using 2-HMSI as a biomarker. International archives of occupational and environmental health, 2003. 76: p. 267-274.
    130. Käfferlein, H., et al., The use of biomarkers of exposure of N, N-dimethylformamide in health risk assessment and occupational hygiene in the polyacrylic fibre industry. Occupational and environmental medicine, 2005. 62(5): p. 330-336.
    131. Hanisch, C., et al., Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes. Journal of cleaner production, 2015. 108: p. 301-311.
    132. Wu, P.M., et al., Vibrational and electrochemical studies of pectin—a candidate towards environmental friendly lithium-ion battery development. PNAS nexus, 2022. 1(4): p. pgac127.
    133. Su, Y.-H., et al., A green recyclable Li3VO4-pectin electrode exhibiting pseudocapacitive effect as an advanced anode for lithium-ion battery. Journal of Energy Storage, 2023. 72: p. 108454.
    134. Chen, Y.-R., et al., Enhanced electrochemical performance of a LiFePO4 cathode with an environmentally friendly pectin/polyethylene glycol binder. Journal of Power Sources, 2024. 613: p. 234861.
    135. Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
    136. Simon, P., Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin? Science, 2014. 343(6176): p. 1210-1211.
    137. Trasatti, S. and G. Buzzanca, Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. Journal of electroanalytical chemistry and interfacial electrochemistry, 1971. 29(2): p. A1-A5.
    138. Galizzioli, D., F. Tantardini, and S. Trasatti, Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes. Journal of Applied Electrochemistry, 1974. 4(1): p. 57-67.
    139. Ma, H., et al., Disassembly–reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small, 2017. 13(30): p. 1701026.
    140. Kim, J.W., V. Augustyn, and B. Dunn, The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Advanced Energy Materials, 2012. 2(1): p. 141-148.
    141. Augustyn, V., et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature materials, 2013. 12(6): p. 518-522.
    142. Okubo, M., et al., Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. Journal of the American chemical society, 2007. 129(23): p. 7444-7452.
    143. Cook, J.B., et al., Pseudocapacitive charge storage in thick composite MoS2 nanocrystal‐based electrodes. Advanced Energy Materials, 2017. 7(2): p. 1601283.
    144. Mondal, S.K. and N. Munichandraiah, Anodic deposition of porous RuO2 on stainless steel for supercapacitor studies at high current densities. Journal of Power Sources, 2008. 175(1): p. 657-663.
    145. Lai, C.-H., et al., Designing pseudocapacitance for Nb2O5/carbide-derived carbon electrodes and hybrid devices. Langmuir, 2017. 33(37): p. 9407-9415.
    146. Choi, C., et al., Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials, 2020. 5(1): p. 5-19.
    147. Warren, B., X-ray Diffraction. Vol. 208. 1990: Dover.
    148. Copeland, L.E. and R.H. Bragg, Quantitative X-ray diffraction analysis. Analytical Chemistry, 1958. 30(2): p. 196-201.
    149. Harrington, G.F. and J. Santiso, Back-to-Basics tutorial: X-ray diffraction of thin films. Journal of Electroceramics, 2021. 47(4): p. 141-163.
    150. Mohammed, A. and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania. 2018.
    151. Seiler, H., Secondary electron emission in the scanning electron microscope. Journal of Applied Physics, 1983. 54(11): p. R1-R18.
    152. Newbury*, D.E. and N.W. Ritchie, Is scanning electron microscopy/energy dispersive X‐ray spectrometry (SEM/EDS) quantitative? Scanning, 2013. 35(3): p. 141-168.
    153. Williams, D.B., et al., The transmission electron microscope. 1996: Springer.
    154. Hayat, M.E., Basic techniques for transmission electron microscopy. 2012: Elsevier.
    155. Fadley, C.S., X-ray photoelectron spectroscopy: Progress and perspectives. Journal of Electron Spectroscopy and Related Phenomena, 2010. 178: p. 2-32.
    156. Stevie, F.A. and C.L. Donley, Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 2020. 38(6).
    157. De Groot, F., High-resolution X-ray emission and X-ray absorption spectroscopy. Chemical Reviews, 2001. 101(6): p. 1779-1808.
    158. Yano, J. and V.K. Yachandra, X-ray absorption spectroscopy. Photosynthesis research, 2009. 102: p. 241-254.
    159. Penner-Hahn, J.E., X-ray absorption spectroscopy. Comprehensive Coordination Chemistry II, 2003. 2: p. 159-186.
    160. Krishtalik, L.I., Charge transfer reactions in electrochemical and chemical processes. 2012: Springer Science & Business Media.
    161. Khan, A.B. and W. Choi, Optimal charge pattern for the high-performance multistage constant current charge method for the li-ion batteries. IEEE transactions on energy conversion, 2018. 33(3): p. 1132-1140.
    162. Yuan, X.-Z., et al., Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications. Vol. 13. 2010: Springer.
    163. Choi, W., et al., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 1-13.
    164. Jash, P., et al., The importance of electrical impedance spectroscopy and equivalent circuit analysis on nanoscale molecular electronic devices. Advanced Functional Materials, 2022. 32(10): p. 2109956.
    165. Wu, W., et al., Enhanced electrochemical performances of LiNi0. 5Mn1. 5O4 spinel in half-cell and full-cell via yttrium doping. Journal of Alloys and Compounds, 2017. 721: p. 721-730.
    166. Wang, J., et al., Syntheses and electrochemical properties of the Na-doped LiNi0. 5Mn1. 5O4 cathode materials for lithium-ion batteries. Electrochimica Acta, 2014. 145: p. 245-253.
    167. Ivers-Tiffée, E. and A. Weber, Evaluation of electrochemical impedance spectra by the distribution of relaxation times. Journal of the Ceramic Society of Japan, 2017. 125(4): p. 193-201.
    168. Gavrilyuk, A., D. Osinkin, and D. Bronin, The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy. Russian Journal of Electrochemistry, 2017. 53: p. 575-588.
    169. He, R., et al., Comparative analysis for commercial li-ion batteries degradation using the distribution of relaxation time method based on electrochemical impedance spectroscopy. Energy, 2023. 263: p. 125972.
    170. Zhao, Y., S. Kücher, and A. Jossen, Investigation of the diffusion phenomena in lithium-ion batteries with distribution of relaxation times. Electrochimica Acta, 2022. 432: p. 141174.
    171. Paul, T., et al., Computation of distribution of relaxation times by Tikhonov regularization for Li ion batteries: usage of L-curve method. Scientific reports, 2021. 11(1): p. 12624.
    172. Zhang, Y., et al., A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy. Journal of power sources, 2016. 308: p. 1-6.
    173. Illig, J., et al., Understanding the impedance spectrum of 18650 LiFePO4-cells. Journal of Power Sources, 2013. 239: p. 670-679.
    174. Zhang, Y., et al., Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. Journal of Power Sources, 2015. 283: p. 464-477.
    175. Cai, W., et al., Characterization and polarization DRT analysis of a stable and highly active proton-conducting cathode. Ceramics International, 2018. 44(12): p. 14297-14302.
    176. Xia, J., et al., A perspective on DRT applications for the analysis of solid oxide cell electrodes. Electrochimica Acta, 2020. 349: p. 136328.
    177. Elgrishi, N., et al., A practical beginner’s guide to cyclic voltammetry. Journal of chemical education, 2018. 95(2): p. 197-206.
    178. Kissinger, P.T. and W.R. Heineman, Cyclic voltammetry. Journal of chemical education, 1983. 60(9): p. 702.
    179. Heinze, J., Cyclic voltammetry—“electrochemical spectroscopy”. New analytical methods (25). Angewandte Chemie International Edition in English, 1984. 23(11): p. 831-847.
    180. Wang, H., A. Thiele, and L. Pilon, Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: A generalized modified poisson–nernst–planck model. The Journal of Physical Chemistry C, 2013. 117(36): p. 18286-18297.
    181. Gonzalez, J., M. Lopez-Tenes, and A. Molina, Non-Nernstian two-electron transfer reactions for immobilized molecules: a theoretical study in cyclic voltammetry. The Journal of Physical Chemistry C, 2013. 117(10): p. 5208-5220.
    182. Leftheriotis, G., S. Papaefthimiou, and P. Yianoulis, Dependence of the estimated diffusion coefficient of LixWO3 films on the scan rate of cyclic voltammetry experiments. Solid State Ionics, 2007. 178(3-4): p. 259-263.
    183. Salah, N.N., A. Khelef, and T. Lanez, Investigation of diffusion of ferrocene and ferricenium in aqueous and organic medium using voltammetry techniques. 2010.
    184. González-Meza, O., et al., Development of a Randles-Ševčík-like equation to predict the peak current of cyclic voltammetry for solid metal hexacyanoferrates. Journal of Solid State Electrochemistry, 2019. 23: p. 3123-3133.
    185. Bojang, A.A. and H.S. Wu, Characterization of electrode performance in enzymatic biofuel cells using cyclic voltammetry and electrochemical impedance spectroscopy. Catalysts, 2020. 10(7): p. 782.
    186. Girard, H.-L., et al., Physical interpretation of cyclic voltammetry for hybrid pseudocapacitors. The Journal of Physical Chemistry C, 2015. 119(21): p. 11349-11361.
    187. Pervez, S. and M.Z. Iqbal, Capacitive and Diffusive Contributions in Supercapacitors and Batteries: A Critique of b‐Value and the ν–ν1/2 Model. Small, 2023. 19(48): p. 2305059.
    188. Pu, X., et al., Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angewandte Chemie International Edition, 2021. 60(39): p. 21310-21318.
    189. Park, H.W. and K.C. Roh, Recent advances in and perspectives on pseudocapacitive materials for supercapacitors–a review. Journal of Power Sources, 2023. 557: p. 232558.
    190. Li, M. and H.G. Park, Pseudocapacitive coating for effective capacitive deionization. ACS applied materials & interfaces, 2018. 10(3): p. 2442-2450.
    191. Ni, S., et al., Li3VO4/N-doped graphene with high capacity and excellent cycle stability as anode for lithium ion batteries. Journal of Power Sources, 2015. 296: p. 377-382.
    192. Kim, H., et al., Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chemical Reviews, 2020. 120(14): p. 6934-6976.
    193. Jung, S.-K., et al., Nanoscale phenomena in lithium-ion batteries. Chemical reviews, 2019. 120(14): p. 6684-6737.
    194. Zhang, D., et al., Electrochemical activation, sintering, and reconstruction in energy‐storage technologies: origin, development, and prospects. Advanced Energy Materials, 2022. 12(19): p. 2103689.
    195. Yoon, D.-E., et al., Dependency of electrochemical performances of silicon lithium-ion batteries on glycosidic linkages of polysaccharide binders. Acs Applied Materials & Interfaces, 2016. 8(6): p. 4042-4047.
    196. Gendensuren, B., C. He, and E.-S. Oh, Preparation of pectin-based dual-crosslinked network as a binder for high performance Si/C anode for LIBs. Korean Journal of Chemical Engineering, 2020. 37: p. 366-373.
    197. Martha, S.K., et al., Electrode architectures for high capacity multivalent conversion compounds: iron (II and III) fluoride. Rsc Advances, 2014. 4(13): p. 6730-6737.
    198. Yourey, W., et al., Determining accelerated charging procedure from half cell characterization. Journal of the Electrochemical Society, 2019. 166(8): p. A1432.
    199. Kazakopoulos, A. and O. Kalogirou, Effect of humidity on the conduction processes of Li 3 VO 4. Journal of materials science, 2009. 44: p. 4987-4992.
    200. Sun, B., et al., An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Organic Electronics, 2017. 42: p. 181-186.
    201. Ross, P., Studies of interfacial chemistry in lithium and Li-ion battery systems using infrared spectroscopy. ECS Transactions, 2006. 1(26): p. 161.
    202. Cheong, K.Y., et al., Review on resistive switching mechanisms of bio-organic thin film for non-volatile memory application. Nanotechnology Reviews, 2021. 10(1): p. 680-709.
    203. Lim, Z.X. and K.Y. Cheong, Nonvolatile Memory Device Based on Bipolar and Unipolar Resistive Switching in Bio‐Organic Aloe Polysaccharides Thin Film. Advanced Materials Technologies, 2018. 3(5): p. 1800007.
    204. Xu, J., et al., A reverse-design-strategy for C@ Li 3 VO 4 nanoflakes toward superb high-rate Li-ion storage. Journal of Materials Chemistry A, 2021. 9(32): p. 17270-17280.
    205. Illig, J., et al., Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling. Journal of The Electrochemical Society, 2012. 159(7): p. A952.
    206. Espinosa-Villatoro, E., et al., Tracking the evolution of processes occurring in silicon anodes in lithium ion batteries by 3D visualization of relaxation times. Journal of Electroanalytical Chemistry, 2021. 892: p. 115309.
    207. Hsu, C. and F. Mansfeld, Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion, 2001. 57(09).
    208. Rodríguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 1993. 192(1-2): p. 55-69.
    209. Wan, T.H., et al., Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochimica Acta, 2015. 184: p. 483-499.
    210. Tesler, A., et al., Analyzing results of impedance spectroscopy using novel evolutionary programming techniques. Journal of Electroceramics, 2010. 24(4): p. 245-260.
    211. Su, K., et al., Lithiation and delithiation induced magnetic switching and electrochemical studies in α-LiFeO2 based Li ion battery. Materials Today Physics, 2021. 18: p. 100373.
    212. Zoltowski, P., On the electrical capacitance of interfaces exhibiting constant phase element behaviour. Journal of Electroanalytical Chemistry, 1998. 443(1): p. 149-154.
    213. Chang, B.-Y., Conversion of a constant phase element to an equivalent capacitor. Journal of Electrochemical Science and Technology, 2020. 11(3): p. 318-321.
    214. Kim, W.-T., et al., Lithium intercalation and crystal chemistry of Li3VO4 synthesized by ultrasonic nebulization as a new anode material for secondary lithium batteries. Journal of The Electrochemical Society, 2014. 161(9): p. A1302.
    215. Li, Q., et al., Self-template synthesis of hollow shell-controlled Li 3 VO 4 as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(37): p. 18839-18842.
    216. Li, Q., et al., Mesoporous Li3VO4/C Submicron‐Ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for High‐Power Lithium‐Ion Batteries. Advanced Science, 2015. 2(12): p. 1500284.
    217. Shen, L., et al., Peapod‐like Li3VO4/N‐doped carbon nanowires with pseudocapacitive properties as advanced materials for high‐energy lithium‐ion capacitors. Advanced Materials, 2017. 29(27): p. 1700142.
    218. Ye, J., et al., Constructing Li 3 VO 4 nanoparticles anchored on crumpled reduced graphene oxide for high-power lithium-ion batteries. New Journal of Chemistry, 2018. 42(16): p. 13241-13248.
    219. Yang, S., et al., A scalable synthesis of 2D laminate Li 3 VO 4/C for robust pseudocapacitive Li-ion storage. Journal of Materials Chemistry A, 2020. 8(40): p. 21122-21130.
    220. Zhu, X., et al., Synthesis and characteristics of Li3V2 (PO4) 3 as cathode materials for lithium-ion batteries. Solid State Ionics, 2008. 179(27-32): p. 1679-1682.
    221. Ren, M., et al., Core− shell Li3V2 (PO4) 3@ C composites as cathode materials for lithium-ion batteries. The Journal of Physical Chemistry C, 2008. 112(14): p. 5689-5693.
    222. Yuan, W., et al., Synthesis of Li3V2 (PO4) 3 cathode material via a fast sol–gel method based on spontaneous chemical reactions. Journal of Power Sources, 2012. 201: p. 301-306.
    223. Chen, S., et al., Atomic-scale structural and chemical evolution of Li 3 V 2 (PO 4) 3 cathode cycled at high voltage window. Nano Research, 2019. 12: p. 1675-1681.
    224. Membreño, N., et al., Electrode/electrolyte interface of composite α-Li3V2 (PO4) 3 cathodes in a nonaqueous electrolyte for lithium ion batteries and the role of the carbon additive. Chemistry of Materials, 2015. 27(9): p. 3332-3340.
    225. Rui, X., N. Yesibolati, and C. Chen, Li3V2 (PO4) 3/C composite as an intercalation-type anode material for lithium-ion batteries. Journal of Power Sources, 2011. 196(4): p. 2279-2282.
    226. Rui, X., et al., Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2 (PO4) 3 anode material. Solid State Ionics, 2011. 187(1): p. 58-63.
    227. Wang, L., et al., Structure tracking aided design and synthesis of Li3V2 (PO4) 3 nanocrystals as high-power cathodes for lithium ion batteries. Chemistry of Materials, 2015. 27(16): p. 5712-5718.
    228. Mao, W.-f., et al., The interval high rate discharge behavior of Li3V2 (PO4) 3/C cathode based on in situ polymerization method. Electrochimica acta, 2013. 88: p. 429-435.
    229. Xie, Y., et al., Uniform nucleation of sodium/lithium in holey carbon nanosheet for stable Na/Li metal anodes. Chemical Engineering Journal, 2022. 427: p. 130959.
    230. Hong, Y.-S., et al., In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field. Energy Storage Materials, 2018. 11: p. 118-126.
    231. Betz, J., et al., Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Advanced energy materials, 2019. 9(6): p. 1803170.
    232. Semykina, D.O., et al., Crystal Chemistry and Ionic Conductivity of the NASICON-Related Phases in the Li3–x Na x V2 (PO4) 3 System. Inorganic Chemistry, 2023. 62(15): p. 5939-5950.
    233. Cushing, B.L. and J.B. Goodenough, Li2NaV2 (PO4) 3: A 3.7 V lithium-insertion cathode with the rhombohedral NASICON structure. Journal of Solid State Chemistry, 2001. 162(2): p. 176-181.
    234. Mao, W.-f., et al., Facile Synthesis of hybrid phase Li2NaV2 (PO4) 3 and its application in lithium ion full cell: Li2NaV2 (PO4) 3|| Li2NaV2 (PO4) 3. Electrochimica Acta, 2014. 147: p. 498-505.
    235. Karuppiah, S. and K. Nallathamby, In situ formed Li2NaV2 (PO4) 3: potential cathode for lithium ion batteries. The Journal of Physical Chemistry C, 2017. 121(24): p. 13101-13105.
    236. Zhang, Y., et al., Rhombohedral NASICON-structured Li 2 NaV 2 (PO 4) 3 with single voltage plateau for superior lithium storage. RSC Advances, 2014. 4(17): p. 8627-8631.
    237. Li, P., et al., Lithium sodium vanadium phosphate and its phase transition as cathode material for lithium ion batteries. Electrochimica Acta, 2015. 180: p. 120-128.
    238. An, Q., et al., Nanoflake‐assembled hierarchical Na3V2(PO4)3/C microflowers: superior Li storage performance and insertion/extraction mechanism. Advanced Energy Materials, 2015. 5(10): p. 1401963.
    239. Liu, Y., et al., Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. EScience, 2022. 2(1): p. 10-31.
    240. Wei, C., et al., Voltage window-dependent electrochemical performance and reaction mechanisms of Na3V2(PO4)3 cathode for high-capacity sodium ion batteries. Ionics, 2020. 26: p. 2343-2351.

    QR CODE