簡易檢索 / 詳目顯示

研究生: 陳奕文
Yiwen Chen
論文名稱: 比較金氧半導體電晶體及金屬半導體電晶體的製程與特性分析之研究
GaAs MOSFET and MESFET: MBE Growth, Processing, Characterization, and Analysis
指導教授: 洪銘輝
Minghwei Hong
吳泰伯
Taibor Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 55
中文關鍵詞: 金氧半導體電晶體砷化鎵
外文關鍵詞: MOSFET, GaAs
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要:
    本篇論文研究探討金氧半導體電晶體以及金屬半導體電晶體的製程以及特性分析。製程包含用高真空的分子束磊晶系統成長三五族的試片和摻有矽的通道以及Ga2O3(Gd2O3)的氧化層,還有後續電晶體的製作和電性量測與分析。對於n-type 的金屬半導體電晶體,採用了平面二維式製程。尺寸為1 x 50 □m2的元件展現出相當高的電導(transconductance)達180mS/mm以及電流密度160 mA/mm (at Vg=0.5V and Vd=4V)。有效的通道厚度可根據量測到的最高飽和電流密度(Id,sat)以及pinch-off voltage (Vp)來計算得到。有效的通道厚度會比正常成長的通道厚度稍微薄一點,是因為閘極 (gate)所造成的空乏區(depletion region),一部分是被介面的缺陷(interface trap)影響,或是電性量測的誤差造成。
    尺寸為1.6 x 100 □m2空乏型(depletion-mode)的金氧半導體電晶體(MOSFET),其氧化層厚度為480 Å﹐厚度1000 Å通道的載子濃度為4x1017 cm-3,表現了高達330mA/mm (at Vg=4V and Vd=4V)的電流密度﹐而最大的電導 (transconductance)達130 mS/mm。閘極 (gate) 的電壓可以上升到4V並產生了很大的聚合(accumulation)電流表示出極佳的氧化物與通道的介面性質。氧化物的崩潰電場強度 (breakdown field strength)在正的部份達+6MV/cm而在負的部份達-7MV/cm。漏電流(leakage current)的不對稱性可能是由於製程破壞閘極介電層所造成。


    ABSTRACT
    In this thesis, recent results on GaAs MESFET and MOSFET were discussed; including MBE growth of GaAs:Si channel layer, deposition of Ga2O3(Gd2O3), device processing and characteristics. For the fabrication of n-channel GaAs MESFET, the planar processing steps were adopted. The device of 1 x 50 □m2 shows a high transconductance gm of 180mS/mm and a maximum current density of 160 mA/mm (at Vg=0.5V and Vd=4V). The effective channel-layer thickness of the device, estimated from the measured saturation current (Id,sat) and pinch-off voltage (Vp), is thinner than the nominal grown channel layer. The difference is mainly caused by the gate depletion, with a small portion of that being influenced by the defects- induced depletion or electrical measurement discrepancy.
    A depletion-mode MOSFET, with a size of 1.6 x 100 □m2, Ga2O3(Gd2O3) 480 Å thick as a gate oxide, and a channel 1000 Å thick of a 4E17 cm-3 doping, shows a maximum current density of 330 mA/mm (at Vg=4V and Vd=4V) and a maximum gm of 130 mS/mm. The gate bias-voltage can be up to 4V, raising large accumulation current, which indicate the high quality of the interface of the oxide and the channel. The oxide breakdown field strength is about +6MV/cm for the positive sweep and at least -7MV/cm for the negative sweep. An unsymmetrical behavior in the gate leakage (from gate to source) is probably caused by the damage of gate dielectric during the processing, which has caused high gate leakage currents. The leakage, however, has been reduced with a forming gas annealing.

    Contents □□□□□□□□ Page Contents i Figure caption ii Section 1: Introduction 1 Chapter 1.1 Field effect transistor 1 Chapter 1.2 Si-SiO2 interface 3 Chapter 1.3 Compound-semiconductor interface 3 Chapter 1.4 GaAs based MOSFET 7 Section 2: Experimental procedures 11 Chapter 2.1 MBE growth 11 Chapter 2.2 Device fabrication 14 Chapter 2.2-1 Mask designation 15 Chapter 2.2-2 Process flow 17 Section 3: Device structure 25 Section 4: Results and discussion 27 Chapter 4.1 GaAs MESFET 27 Chapter 4.1-1 Transmission line model 30 Chapter 4.1-2 Effective channel thickness 34 Chapter 4.2 GaAs diode 36 Chapter 4.3 GaAs MOSFET 38 Section 5: Conclusion and summary 46 Section 5: Future work 48 Reference 52

    References
    [1]. (a) J. Bardeen and W. H. Brattain, Phys. Rev., 74, 230, 1948.(b) W. Shockley, Bell Syst. Tech. J., 28, 435, 1949.
    [2]. W. Shockley, Proc. IRE, 40, p.1365, 1952.
    [3]. G.C. Dacey and I.M. Ross, Proc. IRE, 41, p.1149, 1953.
    [4]. G.C. Dacey and I.M. Ross, Bell Syst. Tech. J., 34, p. 1149, 1955.
    [5]. C. A. Mead, Proc. IEEE, 54, p.307, 1966.
    [6]. W.W. Hooper and W.I. Lehrer, Proc. IEEE, 55, 1967.
    [7].The transistor 50th Anniversary: 1947-1997, Bell Lab. Tech. J, 2(4): Autumn 1997.
    [8]. M. Hong, C. T. Liu, H. Reese, and J. R. Kwo, Encyclopedia of Elecrical and Electronics Engineering, 1999.
    [9]. M. Passlack, M. Hong, J. P. Mannaerts, R. L. Opila, S. N. G. Chu, N. Moriya, F. Ren, J. R. Kwo, IEEE Trans. Electron Devices, 44 (1997) 214.
    [10]. F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, W. S. Tseng, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, IEEE Electron Device Letters, V. 19, No. 8, p. 309, 1998.
    [11]. M. Hong, J. N. Baillargeon, J. Kwo, J. P. Mannaerts, and A. Y. Cho, Proceedings of 2000 IEEE International Symposium on Compound Semiconductors, p.345, 00TH9498. The paper was presented at the 27th International Symposium on Compound Semiconductors, Monterey, California, October 2-5, 2000.
    [12]. F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca S. J. Pearton, and C. R. Abernathy, Appl. Phys. Lett., 73, 3893-3895, 1998.
    [13]. See the International Technology Roadmap for Semiconductors, 2001 edition, ITRS homepage, http://www.public.itrs.net.
    [14]. V.M. Goldschmidt, Trans. Faraday Soc, 25, 1929, p. 253.
    [15]. H. Welker, Z. Naturforsch. A, 7, 1952, p. 744.
    [16]. F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho,, IEEE Int’l Electron Devices Meeting (IEDM) Technical Digest, p.943, 1996, and also in Solid State Electronics, 41 (11), 1751, 1997.
    [17]. M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou, and V. J. Fratello, J. Vac. Sci. Technol. B 14(3), May/Jun, 2297, 1996.
    [18]. Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, IEEE Electron Device Letters, 20, pp. 457-459, 1999.
    [19]. Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, H. S. Tsai, J. Kwo, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, Electronics Letters, Vol. 35, No. 8, 667, April 15th 1999.
    [20]. B. Yang, P. D. Ye, J. Kwo, M. R. Frei, H.-J. L. Gossmann, J. P. Mannaerts, M. Sergent, M. Hong, K. Ng, and J. Bude, Conf. Proc. 2002 GaAs IC Symposium, Monterey, CA, Oct., 2002.
    [21]. M. Hong, F. Ren, J. M. Kuo, W. S. Hobson, J. Kwo, J. P. Mannaerts, J. R. Lothian, and Y. K. Chen, J. Vac. Sci. Technol. B16(3), p.1398, 1998.
    [22]. P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H,-J. L. Gossman, M. Hong, and J. Bude, IEEE Electron Device Lett. 24, 209, 2003.
    [23]. P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. 84, 434, 2004.
    [24]. F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, Solid State Electronics, 41 (11), p.1751, 1997.
    [25]. Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, H. S. Tsai, J. Kwo, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, Electronics Letters 35 (1999) 667
    [26]. "Semiconductor physics and devices: basic principles", Donald A. Neamen, McGraw Hill, 2003.
    [27]. "Physics of Semiconductor Devices", S. M. Sze, 2nd edition, John Wiley & Sons, 1981.
    [28]. H. T. Lue, C. Y. Liu, and C. Y. Tseng, IEEE Electronic Device Letters, 23, 553, 2002.
    [29]. T. S. Lay, W. D. Liu, M. Hong, J. Kwo, and J. P. Mannaerts, Electronics Letters, Vol. 37, No. 9, 595, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE