簡易檢索 / 詳目顯示

研究生: 黃立陽
Huang, Li-Yang
論文名稱: 各種不同中間氧化層對晶圓接合性質之影響
Effect of various interfacial SiO2 layer on the properties of wafer direct bonding
指導教授: 胡塵滌
Hu, Chen-Ti
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 128
中文關鍵詞: 晶圓接合氧化層矽晶圓熱癒合
外文關鍵詞: wafer bonding, SiO2, Si, thermal healing
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目標,為利用日益成熟之晶圓接合技術,將具有自生氧化層(Native Oxide)或成長不同厚度氧化層(Thermal Oxide)之矽晶圓利用化學法晶圓直接接合,或電漿表面活化接合兩種方式接合,分別接合成為各種不同中間氧化層的矽晶圓對,並討論不同中間氧化層厚度與接合強度的關係,且探討矽晶圓對接合界面之物理和化學性質。
      研究之另一目標,比較各種不同中間氧化層厚度的矽晶圓對,經過刀刃法(Crack Opening Method)後熱癒合(Thermal Healing)的情況,以了解不同中間氧化層厚度與熱癒合行為的關係,以達到最佳接合結果和條件。
      利用紅外線照相術(IR)、光學顯微鏡(OM)和場發射掃描式電子顯微鏡(SEM)觀察矽晶圓對的接合形貌,發現電漿表面活化處理過的矽晶圓對,較化學法清洗處理過的矽晶圓對,除有較佳的接合形貌之外,其拉伸強度(Tensile Strength)和界面能(Surface Energy)也較強,且隨中間氧化層厚度的增厚,矽晶圓對的界面能也隨之增強,可能是經電漿表面活化過的矽晶圓表面,氫氧基(-OH)數量增加,兩矽晶圓彼此之間能以較多的凡得瓦爾鍵或氫鍵鍵結接合,隨熱處理溫度增加,氧與矽原子形成較多siloxane (Si-O-Si)的化學鍵結,使接合表面以較多共價鍵展現較強之界面能。
      對於中間只有較薄自生氧化層厚度(~36Å)的矽晶圓對,其熱癒合的產生除要在高溫(1273K以上),熱癒合的時間也需要較長,才能達到熱癒合的效果。而對於具有較厚中間氧化層(≧1000Å)的接合矽晶圓對,只有973K熱癒合溫度和時間45分鐘,就可產生熱癒合且得到高界面能,證實了中間氧化層對熱癒合行為的重要性。本晶圓接合研究結果,用來評估晶圓接合製程和配合的中間氧化層厚度,達到較佳接合性質,以期更廣泛地應用於微機電系統和積體電路上。


      The technology of wafer direct bonding has been employed in present study to bond several types of silicon bonded wafer pairs with various interfacial SiO2 layers, such as: a silicon wafer with a surface native oxide layer bonded to another silicon wafer with a native oxide layer, a silicon wafer with a native oxide bonded to a thermally oxidized silicon wafer, or a thermally oxidized silicon wafer bonded to another thermally oxidized silicon wafer. Those wafers were cleaned by chemical solution with/without activation process by oxygen plasma treatment prior to wafer direct bonding.
      The bonding qualities and the cross-sectional microstructures of those bonded wafer pairs were examined with the infrared (IR) photography, optical microscope (OM), field emission scanning electron microscope (FESEM), and the crack opening method for bonding surface energy evaluation. From these results, the bonded wafer pairs with plasma surface activation demonstrated better bonding qualities than those with chemical solution cleaning process only. Moreover, the boned wafer pairs with thicker interfacial SiO2 layer have greater bonding strengths. It is suggested that the increase of hydroxyl groups (-OH) with plasma activation process induces higher van der Waals attraction forces or hydrogen bond between the surfaces of two bonded wafers.
      The second aim of this study is to examine the relationship of thermal healing properties for recovering the surface energy of previously de-bonded wafer pairs by crack opening method versus various thicknesses of interfacial SiO2 layers. An optimal process option for the bonded wafer pairs with thickness of interfacial SiO2 layers is suggested from this study.
      The temperature and the time for effectively thermal healing process in a bonded wafer pairs with a thin interfacial SiO2 layer (~36Å) have to be higher (~1273K) and longer (~90min). On the other hand, the temperature and time for effectively thermal healing process in a bonded wafer pairs with a relatively thick interfacial SiO2 layer (~1000Å) were found to be lower (~973K) and shorter (~45min), respectively.
      From the present investigation, the significant of interfacial SiO2 layer in the wafer bonding process as well as the thermal healing behavior was observed. Furthermore, the bonded wafer pairs with an appropriate interfacial SiO2 layer demonstrate a great potential on the constructions and applications in MEMS, micro-sensors and micro-pumps, etc.

    摘要 I Abstract III 目錄 V 表目錄 IX 圖目錄 XI 第一章 前言 1 第二章 文獻回顧 3 2-1. 晶圓接合之發展 (Development of Wafer Bonding) 3 2-2. 晶圓接合之技術 (Technology of Wafer Bonding) 4 2-2-1. 化學法晶圓直接接合 (WDB, Wafer Direct Bonding) 5 2-2-2. 電漿表面活化接合 (Plasma Surface Activation Bonding) 6 2-3. 晶圓接合之中間氧化層影響 (Effect of Interfacial SiO2 Layers on Wafer Bonding) 7 2-4. 晶圓接合之應用 (Application of Wafer Bonding) 9 2-4-1. 積體電路 (IC, Integrated Circuit) 9 2-4-2. 微機電系統 (MEMS, Micro Electro-mechanical Systems) 10 2-4-3. 異質接合 (Hetero-junction) 10 2-4-4. 封裝保護作用 (Protection of Packaging) 12 第三章 實驗方法與步驟 21 3-1. 氧化層成長 (Thermal Oxide Growing) 21 3-2. 化學法晶圓直接接合製程 (WDB, Wafer Direct Bonding) 22 3-2-1. 晶圓表面清洗 (Wafer Surface Cleaning) 22 3-2-2. 接合 (Bonding) 23 3-3. 電漿表面活化晶圓接合製程 (Wafer Bonding of Plasma Surface Activation) 24 3-3-1. 晶圓表面清洗 (Wafer Surface Cleaning) 24 3-3-2. 電漿表面活化 (Plasma Surface Activation) 24 3-3-3. 接合製程 (Bonding) 25 3-3-4. 退火 (Annealing) 25 3-3-5. 熱癒合 (Thermal Healing) 26 3-4. 實驗分析儀器 (Equipment of Analysis) 27 3-4-1. 歐傑電子光譜儀 (AES, Auger Electron Spectrometer) 27 3-4-2. 原子力顯微鏡 (AFM, Atomic Force Microscope) 27 3-4-3. 紅外線照相術 (Infrared Photography) 28 3-4-4. 接合界面觀察 (Observation of Bonding Interface) 29 3-4-5. 接合強度測試 (Testing of Tensile Strength) 29 3-4-6. 界面能量測 (Testing of Surface Energy) 30 第四章 結果與討論 37 4-1. 自生氧化層厚度分析 (Thickness Analyze of Native Oxide Layers) 37 4-2. 表面粗糙度分析 (Analysis of Surface Roughness) 38 4-3. 試片代號定義 (Definition of Sample ) 39 4-4. 接合狀態觀察 (Observation of Bonding ) 39 4-5. 接合截面觀察 (Observation of Cross-Section) 43 4-6. 拉伸強度量測 (Testing of Tensile Strength) 46 4-7. 界面能量測 (Testing of Surface Energy) 48 4-8. 熱癒合量測 (Testing of Thermal Healing) 51 第五章 結論 84 參考文獻 88 附錄一 94 附錄二 104

    [1] Pin Jan Wang, Chun Chih Chuang, and Chen Ti Hu, "Recovery of Blade-Insertion-Tested Si Wafer Pairs by Thermal Healing," Journal of The Electrochemical Society 153 (3), G192-G196 (2006).
    [2] Roger G. Horn, "Surface Forces and Their Action in Ceramic Materials," Journal of the American Ceramic Society 73 (5), 1117-1135 (1990).
    [3] Douglas T. Smith Kai-Tak Wan, Brain R. Lawn,, "Fracture and Contact Adhesion Energies of Mica-Mica, Silica-Silica, and Mica-Silica Interfaces in Dry and Moist Atmospheres," Journal of the American Ceramic Society 75 (3), 667-676 (1992).
    [4] J. B. Lasky, S. R. Stiffler, F. R. White, et al., presented at the Electron Devices Meeting, 1985 International, 1985 (unpublished).
    [5] J. B. Lasky, "Wafer bonding for silicon-on-insulator technologies," Applied Physics Letters 48 (1), 78-80 (1986).
    [6] M. Shimbo, K. Furukawa, K. Fukuda, et al., "Silicon-to-silicon direct bonding method," Journal of Applied Physics 60 (8), 2987-2989 (1986).
    [7] Q. Y. Tong, X. L. Xu, and H. Shen, "Diffusion and oxide viscous flow mechanism in SDB process and silicon wafer rapid thermal bonding," Electronics Letters 26 (11), 697-699 (1990).
    [8] K. Y. Ahn, R. Stengl, T. Y. Tan, et al., "Stability of interfacial oxide layers during silicon wafer bonding," Journal of Applied Physics 65 (2), 561-563 (1989).
    [9] Hideki Takagi, Ryutaro Maeda, Teak Ryong Chung, et al., "Low-temperature direct bonding of silicon and silicon dioxide by the surface activation method," Sensors and Actuators A: Physical 70 (1-2), 164-170 (1998).
    [10] T. Suni, K. Henttinen, I. Suni, et al., "Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2," Journal of The Electrochemical Society 149 (6), G348-G351 (2002).
    [11] Gertrud Krauter, Andreas Schumacher, and Ulrich Gosele, "Low temperature silicon direct bonding for application in micromechanics: bonding energies for different combinations of oxides," Sensors and Actuators A: Physical 70 (3), 271-275 (1998).
    [12] Benoit Olbrechts, Xuanxiong Zhang, Yannick Bertholet, et al., "Effect of interfacial SiO2 thickness for low temperature O2 plasma activated wafer bonding," Microsystem Technologies 12 (5), 383-390 (2006).
    [13] Y. H. Wu, C. H. Huang, W. J. Chen, et al., "The Buried Oxide Properties in Oxygen Plasma-Enhanced Low-Temperature Wafer Bonding," Journal of The Electrochemical Society 147 (7), 2754-2756 (2000).
    [14] Anke Sanz-Velasco, Petra Amirfeiz, Stefan Bengtsson, et al., "Room Temperature Wafer Bonding Using Oxygen Plasma Treatment in Reactive Ion Etchers With and Without Inductively Coupled Plasma," Journal of The Electrochemical Society 150 (2), G155-G162 (2003).
    [15] K. Henttinen, I. Suni, and S. S. Lau, "Mechanically induced Si layer transfer in hydrogen-implanted Si wafers," Applied Physics Letters 76 (17), 2370-2372 (2000).
    [16] Y. Bertholet, F. Iker, J. P. Raskin, et al., "Steady-state measurement of wafer bonding cracking resistance," Sensors and Actuators A: Physical 110 (1-3), 157-163 (2004).
    [17] Wei Bo Yu, Cher Ming Tan, Jun Wei, et al., "Influence of applied load on vacuum wafer bonding at low temperature," Sensors and Actuators A: Physical 115 (1), 67-72 (2004).
    [18] James B. Kuo and Ker-Wei Su, CMOS VLSI ENGINEERING: Silicon-on-insulator (SOI). (kluwer Academic Publishers, 1998), p.460.
    [19] M. A. Schmidt, "Wafer-to-wafer bonding for microstructure formation," Proceedings of the IEEE 86 (8), 1575-1585 (1998).
    [20] T. Suni, K. Henttinen, A. Lipsanen, et al., "Wafer Scale Packaging of MEMS by Using Plasma-Activated Wafer Bonding," Journal of The Electrochemical Society 153 (1), G78-G82 (2006).
    [21] Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology. (John Wiley & Sons, Inc., 1998), p.320.
    [22] Taek Ryong Chung, Liu Yang, Naoe Hosoda, et al., "Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method," Applied Surface Science 117-118, 808-812 (1997).
    [23] Taek Ryong Chung, Liu Yang, Naoe Hosoda, et al., "Room temperature GaAs---Si and InP---Si wafer direct bonding by the surface activated bonding method," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 121 (1-4), 203-206 (1997).
    [24] B. F. Levine, A. R. Hawkins, S. Hiu, et al., "20 GHz high performance planar Si/InGaAs p-i-n photodetector," Applied Physics Letters 70 (18), 2449-2451 (1997).
    [25] Yoshihiro Tomita, Masato Sugimoto, and Kazuo Eda, "Direct bonding of LiNbO3 single crystals for optical waveguides," Applied Physics Letters 66 (12), 1484-1485 (1995).
    [26] Kazuo Eda, Masato Sugimoto, and Yoshihiro Tomita, "Direct heterobonding of lithium niobate onto lithium tantalate," Applied Physics Letters 66 (7), 827-829 (1995).
    [27] Qin-Yi Tong, Roman Gafiteanu, and Ulrich Gosele, "Reversible Silicon Wafer Bonding for Surface Protection: Water-Enhanced Debonding," Journal of The Electrochemical Society 139 (11), L101-L102 (1992).
    [28] Andreas Plobl and Gertrud Krauter, "Wafer direct bonding: tailoring adhesion between brittle materials," Materials Science and Engineering: R: Reports 25 (1-2), 1-88 (1999).
    [29] Shin I Lai, Hung Yi Lin, and Chen Ti Hu, "Effect of surface treatment on wafer direct bonding process," Materials Chemistry and Physics 83 (2-3), 265-272 (2004).
    [30] W. P. Maszara, G. Goetz, A. Caviglia, et al., "Bonding of silicon wafers for silicon-on-insulator," Journal of Applied Physics 64 (10), 4943-4950 (1988).
    [31] R. E. Hurley and H. S. Gamble, "Thin film sputtered silicon for silicon wafer bonding applications," Vacuum 70 (2-3), 131-140 (2003).
    [32] K. Dessein, P. S. Anil Kumar, S. Nemeth, et al., "The vacuum wafer bonding technique as an alternative method for the fabrication of metal/semiconductor heterostructures," Journal of Crystal Growth 227-228, 906-910 (2001).
    [33] Q. Y. Tong, G. Kaido, L. Tong, et al., "A Simple Chemical Treatment for Preventing Thermal Bubbles in Silicon Wafer Bonding," Journal of The Electrochemical Society 142 (10), L201-L203 (1995).
    [34] A. Weinert, P. Amirfeiz, and S. Bengtsson, "Plasma assisted room temperature bonding for MST," Sensors and Actuators A: Physical 92, 214-222 (2001).
    [35] Donato Pasquariello, Christer Hedlund, and Klas Hjort, "Oxidation and Induced Damage in Oxygen Plasma In Situ Wafer Bonding," Journal of The Electrochemical Society 147 (7), 2699-2703 (2000).
    [36] Donato Pasquariello, Mikael Lindeberg, Christer Hedlund, et al., "Surface energy as a function of self-bias voltage in oxygen plasma wafer bonding," Sensors and Actuators A: Physical 82, 239-244 (2000).
    [37] M. Wiegand, M. Reiche, and U. Gosele, "Time-Dependent Surface Properties and Wafer Bonding of O2-Plasma-Treated Silicon (100) Surfaces," Journal of The Electrochemical Society 147 (7), 2734-2740 (2000).
    [38] Shari N. Farrens, James R. Dekker, Jason K. Smith, et al., "Chemical Free Room Temperature Wafer To Wafer Direct Bonding," Journal of The Electrochemical Society 142 (11), 3949-3955 (1995).
    [39] Zhang Xuan Xiong and J. P. Raskin, "Low-temperature wafer bonding: a study of void formation and influence on bonding strength," Microelectromechanical Systems, Journal of 14 (2), 368-382 (2005).
    [40] 蘇珍誼, 電漿活化及退火處理對直接接合矽晶圓對接合性質之影響. (國立清華大學材料科學與工程學系碩士論文, 民國九十五年六月), p.65.
    [41] Xuanxiong Zhang, Benoit Olbrechts, and Jean-Pierre Raskin, "Oxygen Plasma and Warm Nitric Acid Surface Activation for Low-Temperature Wafer Bonding," Journal of The Electrochemical Society 153 (12), G1099-G1105 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE