簡易檢索 / 詳目顯示

研究生: 朱偉誠
Jhu, Wei-Cheng
論文名稱: 三維立體封裝結構中微型銲錫接點熱遷移之研究
Study of thermomigration on lead-free micro bump in three-dimensional integrated circuits packaging
指導教授: 歐陽汎怡
Ouyang, Fan-Yi
口試委員: 高振宏
吳子嘉
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: 三維立體封裝熱遷移無鉛銲錫
外文關鍵詞: 3D IC, thermomigration, Pb-free solder bump
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應消費者對於電子產品的需求,封裝技術已由覆晶封裝轉變為三維立體封裝。相對於覆晶封裝,三維立體封裝中所使用的銲錫高度已經縮減了一個數量級。而在此篇論文將會討論覆晶封裝與三維立體封裝中無鉛銲錫的熱遷移效應。在覆晶封裝中,銲錫高度為100 μm,我們可以發現Sn 原子擴散至熱端,導致熱端有銲錫的質量突出而冷端會有質量消耗甚至有孔洞生成,然而當銲錫高度縮減至5 μm 時,便無觀察到銲錫在熱端有明顯的微結構變化。造成在覆晶封裝與三維立體封裝中會有如此差異之情形,我們假設這有可能是因為銲錫高度縮減使得Sn 原子在三維立體封裝中會比在覆晶封裝中擁有更大的背向應力,導致Sn 原子所受的熱遷移驅動力會被背向應力所抵消掉,以至於在三維立體封裝微型銲錫接點中Sn 原子不會有熱遷移發生。而於本篇論文也會討論其臨界溫度梯度與銲錫高度之關係並且利用critical product 計算得到當工作溫度為150 oC時銲錫高度與驅動熱遷移的臨界溫度梯度曲線圖,當銲錫高度縮減時,驅動Sn 原子產生熱遷移所需的臨界溫度梯度會隨之增大;反之當銲錫高度較高時,Sn 原子產生熱遷移時所需的臨界溫度梯度也將會減少。除此之外,在熱遷移實驗後我們也發現三維立體封裝銲錫接點的熱端Ni UBM有嚴重的消耗以及冷端的Ni3Sn4介金屬化合物有劇烈的成長,這非對稱性的Ni UBM 消耗與Ni3Sn4 介金屬化合物成長是由於Ni 原子受溫度梯度影響導致熱遷移到冷端與Sn 反應所導致。同時,我們也藉由熱端Ni UBM 的消耗計算出Ni 原子在Sn 內的熱傳送值(heat of transport, Q*)為+ 0.578 kJ/mole。


    In order to deal with the requirements of consumer electronic products, the package technology is currently transition from flip chip technology to three dimensional integrated circuits (3D ICs). Compared to flip chip technology, the bump height of microbumps in 3D ICs is shrunk by an order of magnitude smaller than flip chip package. In this thesis, we studied the microstructural evolution of Pb-free solders in 3D ICs packaged under the
    influence of a temperature gradient. The behaviors of thermomigration of Pb-free solder between flip chip and 3D ICs packaged were compared and discussed. When the bump height is about 100 μm in the flip chip samples, Sn atoms moved to the hot end under the temperature gradient, and it induced the Sn mass protrusion at the hot end and Sn mass
    depletion at cold end. Additionally, we found voids form at the cold end. However, when the bump height is about 5 μm in the 3D IC samples, no significant microstructural evolution of Sn was found; instead, the serious dissolution of Ni under-bump metallization (UBM) at hot end was observed. We suggest that this discrepancy between flip chip solder joints and 3D IC microbumps is mainly attributed to the effect of stronger back stress in 3D IC microbumps and the presence of thicker Ni UBM in the 3D IC package. In the flip chip solder joints, the thermomigration driving force of Sn is larger than back stress, resulting in the Sn mass protrusion on the hot end and Sn mass depletion on the cold end. On the other hand, for 3D IC samples, the thermomigration driving force is counteracted by back stress. Moreover, the critical temperature gradient in terms of different bump heights is also discussed, showing below which there will be no net effect of thermomigration of Sn. It is noted that the critical temperature gradient to trigger thermomigration of the Sn atom decreases with increasing the solder bump heights. Furthermore, we also found the asymmetrical growth of Ni3Sn4 intermetallic compounds at both interfaces along with serious consumption of Ni UBM on hot end. We proposed this phenomenon mainly attributed to the thermal gradient driven Ni moving toward the cold end. The molar heat of transport of Ni in Sn was calculated to be + 0.578 kJ/mole.

    中文摘要 ................................................................. i Abstract .................................................................. ii Content ................................................................. iii List of Figures ............................................................. vi List of Tables ............................................................. ix 第一章 研究背景 ......................................................... 1 第二章 文獻回顧 ......................................................... 5 2.1 熱遷移效應 ....................................................... 5 2.2 覆晶封裝技術中產生溫度梯度的主要來源 ............................ 7 2.3 銲錫接點內引發熱遷移效應時所需的溫度梯度理論值 .................. 8 2.4 銲錫接點內的熱遷移效應 .......................................... 9 2.5 通以交流電於共晶錫鉛銲錫接點內產生熱遷移 ....................... 12 2.6 熱遷移效應發生導致金屬墊層破壞 ................................. 14 2.7 迴銲過程導致金屬墊層的原子熱遷移 ............................... 15 2.8 極化效應(polarity effect) .......................................... 15 2.9 背向應力(back stress) ............................................ 17 第三章 實驗步驟 ........................................................ 51 第四章 實驗結果 ........................................................ 61 4.1 利用有限有素分析法模擬熱遷移時銲錫接點內的溫度分布 ............. 61 4.1.1 熱遷移測試條件A 時銲錫接點內的溫度分布 ................... 61 4.1.2 熱遷移測試條件B 時銲錫接點內的溫度分布 ................... 61 4.2 連續性即時觀測(in-situ)熱遷移測試與等溫熱處理測試 ................. 62 4.2.1 於熱遷移測試條件A(170 oC /100 oC)時銲錫接點的微結構變化 .... 62 4.2.2 於熱遷移測試條件B(190 oC /100 oC)時銲錫接點的微結構變化 .... 64 4.2.3 於等溫熱處理測試條件C 時銲錫接點的微結構變化 ............. 65 4.3 非連續性即時觀測(non in-situ)熱遷移測試與等溫熱處理測試 ........... 66 4.3.1 於熱遷移測試條件D(100 oC /190 oC)時銲錫接點的微結構變化 .... 66 4.3.2 於等溫熱處理測試條件E 時銲錫接點的微結構變化 ............. 67 第五章 實驗討論 ........................................................ 96 5.1 比較覆晶封裝與三維立體封裝的熱遷移效應 ......................... 96 5.1.1 銲錫高度對於熱遷移驅動力與背向應力之影響 ................. 96 5.1.2 覆晶封裝中銲錫的熱遷移驅動力與背向應力 ................... 97 5.1.3 三維立體封裝中銲錫的熱遷移驅動力與背向應力 ............... 98 5.1.4 熱遷移時銲錫臨界長度與溫度梯度的關係 .................... 100 5.2 三維立體封裝中熱遷移所導致的極化效應 .......................... 101 5.2.1 熱遷移導致三維立體封裝中冷、熱端Ni UBM 的非對稱性的消耗 101 5.2.2 熱遷移導致三維立體封裝中冷、熱端Ni3Sn4 的非對稱性的成長 .. 102 5.3 Ni 原子的熱遷移通量(JTM,Ni)與熱傳送值(Q*Ni) ....................... 105 5.4 熱遷移導致孔洞生成 ............................................ 106 第六章 結論 ........................................................... 115 References ............................................................... 82

    [1] R. Maheshwary, "3D Stacking: EDA Ch llenge & Opportunitie ”, SEMATECH
    Symposium, 2009.
    [2] K. N. Tu, "Reliability challenges in 3D IC packaging technology," Microelectronics
    Reliability, vol. 51, 2011, pp. 517-523.
    [3] http://www.cse.yzu.edu.tw/images/seminar/3D%20IC.pdf
    [4] http://www.imaps.orgprogramsdevicepackaging2009.htm.pdf
    [5] P. Shewmon, " he therm l diffu ion of c rbon in α nd γ iron Origin l Re earch", Acta
    Mater., vol. 8, 1960, p. 605.
    [6] A. T. Huang, A. M. Gusak, K. N. Tu, and Y.-S. Lai, "Thermomigration in SnPb composite
    flip chip solder joints", Applied Physics Letters, vol. 88, 2006, 141911.
    [7] F. Y. Ouyang, K. N. Tu, Y.-S. Lai, A. M. Gusak, "Effect of entropy production on
    microstructure change in eutectic SnPb flip chip solder joints by thermomigration",
    Applied Physics Letters, vol. 89, 2006, 221906.
    [8] F. Y. Ouyang and C. L. Kao, "In situ observation of thermomigration of Sn atoms to the
    hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints", Journal of Applied Physics, vol. 110,
    2011, 123525.
    [9] Y. C. Chuang and C. Y. Liu, "Thermomigration in eutectic SnPb alloy", Applied Physics
    Letters, vol. 88, 2006, 174105.
    [10] R.W. Cahn, P. Haasen, Physical Metallurgy, Elsevier, Amsterdam, 1983, Chap. 7.
    [11] X. Gu, Y. C. Chan, "Thermomigration and electromigration in Sn58Bi solder joints",
    Journal of Applied Physics, vol. 105, 2009, 093537.
    [12] C. Chen, H. Y. Hsiao, Y.W. Chang, F. Y. Ouyang, K. N. Tu, "Thermomigration in solder
    joints", Materials Science and Engineering: R: Reports, vol. 73, 2012, pp. 85-100.
    [13] M. Y. Guo, C. K. Lin, C. Chen, and K. N. Tu, "Asymmetrical growth of Cu6Sn5
    intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder
    joints", Intermetallics, vol. 29, 2012, pp. 155-158.
    [14] H. Y. Chen, H.W. Lin, C. M. Liu, Y.W. Chang, A. T. Huang, C. Chen, "Thermomigration
    of Ti in flip chip solder joints", Scripta Materialia, vol. 66, 2012, pp. 694-697.
    [15]W. Roush, J. Jaspal, Proc. 32nd IEEE Electron. Comp. Conf. San Diego 1982, p. 342.
    [16] G. J. van Gurp, P. J. de Waard, F. J. du Chatenier, "Thermomigration in indium and
    indium alloy films", Journal of Applied Physics, vol. 58, 1985, p. 728.
    [17] R. A. Johns, D. A. Blackburn, "Grain Boundaries and Their Effect on thermomigration in
    pure lead at low diffusion temperature", Thin Solid Films, vol. 25, 1974, p. 291.
    [18] T. L. Shao,S. H. Chiu, Chih Chen, D. J. Yao, C. Y. Hsu, "Thermal gradient in solder
    joints under electrical-current stressing", J. Electron. Mater., vol. 33, 2004, p. 1350.
    [19] Dan Yang, Y. C. Chan "The Characteristics of electromigration and thermomigration in flip chip solder joints", Budapest Hungary, 2007, p. 17.
    [20] Y. S. Lai and C. L. Kao, "Electrothermal coupling analysis of current crowding and Joule
    heating in flip-chip packages", Microelectronics Reliability, vol. 46, 2006, pp. 1357-1368.
    [21] S. H. Chiu, T. L. Shao, C. Chen, D. J. Yao, C. Y. Hsu, "Infrared microscopy of hot spots
    induced by Joule heating in flip-chip SnAg solder joints under accelerated
    electromigration", Applied Physics Letters, vol. 88, 2006, 022110.
    [22] C. Chen, H. M. Tong, K. N. Tu, "Electromigration and Thermomigration in Pb-Free
    Flip-Chip Solder Joints", Annual Review of Materials Research, vol. 40, 2010, pp.
    531-555.
    [23] F. Y. Ouyang, K. N. Tu, C. L. Kao, and Y. S. Lai, "Effect of electromigration in the
    anodic Al interconnect on melting of flip chip solder joints", Applied Physics Letters, vol.
    90, 2007, 211914.
    [24] C. M. Tsai, Y. L. Lin, J. Y. Tsai, Y. S. Lai, C. R. Kao, "Local melting induced by
    electromigration in flip-chip solder joints", J. Electron. Mater., vol. 35, 2006, p. 1005.
    [25] A. T. Huang, K. N. Tu, and Y. S. Lai, "Effect of the combination of electromigration and
    thermomigration on phase migration and partial melting in flip chip composite SnPb
    solder joints", Journal of Applied Physics, vol. 100, 2006, 033512.
    [26] M. O. Alam, B. Y. Wu, Y. C. Chan, and K. N. Tu, "High electric current density-induced
    interf ci l re ction in micro b ll grid rr y (μBGA) older joint ", Acta Materialia, vol.
    54, 2006, pp. 613-621.
    [27] D. Yang, Y. C. Chan, B. Y. Wu, M. Pecht, "Electromigration and thermomigration
    behavior of flip chip solder joints in high current density packages", Journal of Materials
    Research, vol. 23, 2011, pp. 2333-2339.
    [28] C. Basaran, S. Li, M. F. Abdulhamid, "Thermomigration induced degradation in solder
    alloys", Journal of Applied Physics, vol. 103, 2008, 123520.
    [29] D. Yang, B. Y. Wu, Y. C. Chan, K. N. Tu, "Microstructural evolution and atomic transport
    by thermomigration in eutectic tin-lead flip chip solder joints", Journal of Applied
    Physics, vol. 102, 200, 0435027.
    [30] C. Basaran, M. F. Abdulhamid, "Low temperature electromigration and thermomigration
    in lead-free solder joints," Mechanics of Materials, vol. 41, 2009, pp. 1223-1241.
    [31] Dan Yang, M. O. Alam, B. Y. Wu, Y. C. Chan, "Thermomigration in eutectic tin-lead flip
    chip solder joints," Proc. Electron. Packag. Technol. Conf., 8th, vol. Singapore, p. 565,
    2006.
    [32] H. Ye, C. Basaran, D. Hopkins, "Thermomigration in Pb–Sn solder joints under joule
    heating during electric current stressing", Applied Physics Letters, vol. 82, 2003, p. 1045.
    [33] H. Y. Hsiao, C. Chen, "Thermomigration in flip-chip SnPb solder joints under alternating
    current stressing," Applied Physics Letters, vol. 90, 2007, 152105.
    [34] H. Y. Hsiao, C. Chen, "Thermomigration in Pb-free SnAg solder joint under alternating
    current stressing", Applied Physics Letters, vol. 94, 2009, 092107.
    [35] H. Y. Chen, C. Chen, "Thermomigration of Cu–Sn and Ni–Sn intermetallic compounds
    during electromigration in Pb-free SnAg solder joints", Journal of Materials Research,
    vol. 26, 2011, pp. 983-991.
    [36] H. Y. Chen, C. Chen, and K.-N. Tu, "Failure induced by thermomigration of interstitial
    Cu in Pb-free flip chip solder joints", Applied Physics Letters, vol. 93, 2008, p. 122103.
    [37] H. B. Huntington, Diffusion, American Society for Metals, Metals Park, OH, 1973.
    [38] B. F. Dyson, "Interstitial Diffusion of Copper in Tin", Journal of Applied Physics, vol. 38,
    1967, p. 3408.
    [39] H. Gan and K. N. Tu, "Polarity effect of electromigration on kinetics of intermetallic
    compound formation in Pb-free solder V-groove samples," Journal of Applied Physics,
    vol. 97, p. 063514, 2005.
    [40] J. H. Ke, H. Y. Chuang, W. L. Shih, C. R. Kao, "Mechanism for serrated cathode
    dissolution in Cu/Sn/Cu interconnect under electron current stressing", Acta Materialia,
    vol. 60, 2012, pp. 2082-2090.
    [41] X. F. Zhang, J. D. Guo, J. K. Shang, "Abnormal polarity effect of electromigration on
    intermetallic compound formation in Sn–9Zn solder interconnect", Scripta Materialia,
    vol. 57, 2007, pp. 513-516.
    [42] Y. W. Lin, J. H. Ke, H. Y. Chuang, Y. S. Lai, C. R. Kao, "Electromigration in flip chip
    solder joints under extra high current density", Journal of Applied Physics, vol. 107, 2010,
    p. 073516.
    [43] L. D. Chen, M. L. Huang, S. M. Zhou, "Effect of electromigration on intermetallic
    compound formation in line-type Cu/Sn/Cu interconnect", Journal of Alloys and
    Compounds, vol. 504, 2010, pp. 535-541.
    [44] Y. D. Lu, X. Q. He, Y. F. En, X. Wang, Z. Q. Zhuang, "Polarity effect of electromigration
    on intermetallic compound formation in SnPb solder joints", Acta Materialia, vol. 57,
    2009, pp. 2560-2566.
    [45] T. C. Huang, T. L. Yang, J. H. Ke, C. C. Li, C. R. Kao, "Precipitation induced by
    diffusivity anisotropy in Sn grains under electron current stressing", Journal of Alloys and
    Compounds, vol. 555, 2013, pp. 237-240.
    [46] M. F. Abdulhamid, C. Basaran, "Influence of Thermomigration on Lead-Free Solder
    Joint Mechanical Properties", Journal of Electronic Packaging, vol. 131, 2009, p.
    011002.
    [47] I. A. Blech, "Electromigration in thin aluminum films on titanium nitride", Journal of
    Applied Physics, vol. 47, 1976, p. 1203.
    [48] K. D. Lee, E. T. Ogawa, H. Matsuhashi, P. R. Justison, K. S. Ko, P. S. Ho, et al.,
    "Electromigration critical length effect in Cu/oxide dual-damascene interconnects,"
    Applied Physics Letters, vol. 79, 2001, p. 3236.
    [49] C. C. Wei, C. Chen, "Critical length of electromigration for eutectic SnPb solder stripe,"
    Applied Physics Letters, vol. 88, 2006, p. 182105.
    [50] R. Agarwal, S. E. Ou, K. N. Tu, "Electromigration and critical product in eutectic SnPb
    solder lines at 100 °C," Journal of Applied Physics, vol. 100, 2006, p. 024909.
    [51] J. R. Kraayeveld, A. H. Verbruggen, A. W. J. Willemsen, S. Radelaar, "Critical
    current-length product for electromigration induced resistance changes in short Al lines,"
    Applied Physics Letters, vol. 67, 1995, p. 1226.
    [52] R. G. Filippi, G. A. Biery, R. A. Wachnik, "The electromigration short-length effect in
    Ti-AlCu-Ti metallization with tungsten studs," Journal of Applied Physics, vol. 78, 1995,
    p. 3756.
    [53] Y. S. Lai, C. L. Kao, "Calibration of electromigration reliability of flip-chip packages by
    electrothermal coupling analysis," J. Electron. Mater, vol. 35, 2006, p. 972.
    [54] F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, New York,
    p. p.907, 2001.
    [55] H. P. R. Frederikse, R. J. Fields, A. Feldman, "Thermal and electrical properties of
    copper-tin and nickel-tin intermetallics", Journal of Applied Physics, vol. 72, 1992, p.
    2879.
    [56] H. T. Lee, M. H. Chen, H. M. Jao, T. L. Liao, "Influence of interfacial intermetallic
    compound on fracture behavior of solder joints," Materials Science and Engineering: A,
    vol. 358, pp. 134-141, 2003.
    [57] D. Ma, W. D. Wang, S. K. Lahiri, "Scallop formation and dissolution of Cu–Sn
    intermetallic compound during solder reflow", Journal of Applied Physics, vol. 91, 2002,
    p. 3312.
    [58] E. Stracke, Ch. HERZIG, "Electromigration, Thermomigration, and Solubility of Copper
    in Lead," phys. stat. sol. (a), vol. 47, 1987, p. 513.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE