研究生: |
張郁□ Yu-Hsien Chang |
---|---|
論文名稱: |
以原子力顯微術製作氧化鎳奈米結構並應用於奈米材料選區成長 Fabrication of Nickel Oxide Nanostructures by Atomic Force Microscopy and Its Application to the Selective Growth of Nanomaterials |
指導教授: |
林鶴南
Heh-Nan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 原子力顯微術 、奈米氧化 、奈米碳管 、氧化矽奈米線 |
外文關鍵詞: | atomic force microscopy, nano-oxidation, carbon nanotubes, silicon oxide nanowires |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
原子力顯微術近年來在奈米微影技術方面具有相當大的潛力。尤其,以原子力顯微術的奈米氧化基於適用樣品廣泛、可於大氣環境下操作、具有奈米級解析度等優點,對於製作奈米結構及奈米元件已經建立了一套具重複性且可靠的技術。
本實驗利用原子力顯微術施加負偏壓於導電探針製作各式的氧化鎳奈米結構,其中所製作的氧化點寬度最小可至36 nm。利用稀硝酸移除未氧化的鎳膜而留下氧化鎳結構後,再利用氧化鎳作為觸媒,達到以感應耦合電漿化學氣相沈積系統選區成長垂直排列的奈米碳管之目的。此外亦可將氧化鎳奈米結構透過氣-液-固反應生成氧化矽奈米線。當氧化鎳點的平均大小縮小,奈米碳管或氧化矽奈米線的平均直徑也將隨著下降。本實驗所發展之技術,可用來有效控制奈米碳管或氧化矽奈米線的直徑大小與成長位置。
Atomic force microscopy (AFM) has recently demonstrated a mighty potential in the domain of nanolithography. Particularly, AFM nano-oxidation has been established as a reliable and routine technique for nanostructure and nanodevice fabrication, owing to its advantages of wide range of applicable samples, operation under ambient conditions and nanoscale resolution.
We have employed AFM nano-oxidation to produce a variety of nickel oxide nanostructures by applying a negative bias to a conductive tip. A minimum oxide dot width of about 35 nm was achieved by this technique. After a dip in diluted nitric acid solution, the unoxidized nickel film was etched away and the oxide patterns were preserved. The nickel oxide patterns were then used as catalytic templates and the selective growth of vertically aligned carbon nanotubes by inductively coupled plasma chemical vapor deposition (ICP-CVD) was realized. Besides, the nickel oxide patterns were also used to grow silicon oxide nanowires through a vapor-liquid-solid reaction. In addition, it was found that the average diameter of carbon nanotubes or silicon oxide nanowires decreased as the average size of the nickel oxide dots was reduced. The present technique can used effectively to control the position and the diameter of carbon nanotubes or oxide nanowires.
參考文獻
1. M. T. Browne, P. Charalambous, and V. A. Kudryashov, Microelectron. Eng. 13, 221 (1991).
2. F. Cerrina, Jpn. J. Appl. Phys. 31, 4178 (1992).
3. S. Iijima, Nature, 354, 56 (1991).
4. G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, Nanotechnology, 13. 1 (2002).
5. Y. Homma, Y. Kobayashi, T. Ogino, and T. Yamashita, Appl. Phys. Lett. 81, 2261 (2001).
6. Z. Pan, S. Dai, D. B. Beach, and D. H. Lowndes, Nano. Lett. 3. 1279 (2003).
7. N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12, 163 (1948).
8. A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, J. Vac. Sci. Technol. B 13, 2805 (1995).
9. D. Stievenard, P. A. Fontaine, and E. Dubois, Appl. Phys. Lett. 70, 3272 (1997).
10. M. Yasutake, Y. Y. Ejiri, and T. Hattori, Jpn. J. Appl. Phys. 1 32, L1021 (1993).
11. T. Hattori, Y. Ejiri, and K. Saito, J. Vac. Sci. Technol. A 12, 2586 (1994).
12. P. Avouris, T. Hertel, and R. Martel, Appl. Phys. Lett. 71, 285 (1997).
13. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
14. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990).
15. H. C. Day, and D. R. Allee, Appl. Phys. Lett. 62, 2691 (1993).
16. D. Wang, L. Tsau, and K. L. Wang, Appl. Phys. Lett. 65, 1415 (1994).
17. E. S. Snow and P. M. Campbell, Appl. Phys. Lett. 64, 1932 (1994).
18. L. Tsau, D. Wang, and K. L. Wang, Appl. Phys. Lett. 64, 2133 (1994).
19. E. S. Snow, D. Park, and P. M. Campbell, Appl. Phys. Lett. 69, 269 (1995).
20. E. S. Snow, and P. M. Campbell, Science, 270, 1639 (1995).
21. D. Wang, L. Tsau, K. L. Wang, and P. Chow, Appl. Phys. Lett. 67, 1295 (1995).
22. M. Rolandi, C. F. Quate, and H. Dai, Adv. Mater. 14, 191 (2002).
23. E. S. Snow, W. H. Juan, S. W. Pang, and P. M. Campbell, Appl. Phys. Lett. 66, 1729 (1995).
24. N. Kramer, H. Birk, J. Jorritsma, and C. Schönenberger, Appl. Phys. Lett. 66, 1325 (1995).
25. S. C. Minne, H. T. Soh, Ph. Flueckiger, and C. F. Quate, Appl. Phys. Lett. 66, 703 (1995).
26. K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian, and J. S. Harris, Appl. Phys. Lett. 68, 34 (1996).
27. P. M. Campbell, E. S. Snow, and P. J. McMarr, Appl. Phys. Lett. 66, 1388 (1995).
28. R. García, M. Calleja, and H. Rohrer, J. Appl. Phys. 86, 1898 (1999).
29. H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 63, 1288 (1993).
30. M. Tello and Ricardo Garcia, Appl. Phys. Lett. 79, 424 (2001).
31. J. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992).
32. J. Servat, P. Gorostiza, and F. Sanz, F. P´erez-Murano, N. Barniol, G. Abadal, and X. Aymerich, J. Vac. Sci. Technol. A, 14, 1208 (1996).
33. F. Pe´rez-Murano, G. Abadal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza, and F. Sanz, J. Appl. Phys. 78, 6797 (1995).
34. M. Calleja and R. García, Appl. Phys. Lett. 76, 3427 (2000).
35. E. Dubois and J. L. Bubendorff, J. Appl. Phys. 87, 8148 (2000).
36. J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, J. Appl. Phys. 84, 6891 (1998).
37. M. Calleja, J. Anguita, R Garcia, K. Birkelund, F. Pérez-Murano and J. A. Dagata, Nanotechnology, 10, 34 (1999).
38. C. Huh and S. J. Park, J. Vac. Sci. Technol. B, 18, 55 (2000).
39. A. F. Benton, and P. H. Emmett, J. Am. Chem. Soc. 46, 2728 (1924).
40. J. A. Rodriguez, J. C. Hanson, A. I. Frenkel, J. Y. Kim, and M. Perez, J. Am. Chem. Soc. 124, 346 (2002).
41. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, Nature, 427, 426 (2004).
42. J. T. Richardson, R. Scates, and M. V. Twigg, Applied Catalysis A: General, 246, 137 (2003).
43. Y. Y. Wei, and G. Eres, Nanotechnology, 11, 61 (2000).
44. K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, Appl. Phys. Lett. 79, 1534 (2001).
45. J. Q. Hu, Y. Jiang, X. M. Meng, C. S. Lee, and S. T. Lee, Chemical Physics Letters, 367, 339 (2003).
46. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998).
47. Y. J. Xing, D.P. Yu, Z.H. Xi, and Z.Q. Xue, Appl. Phys. A, 76, 551 (2003).
48. R. S. Wager, and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
49. E. I. Givargizov, J. Crystal Growth, 31, 20 (1975).
50. G. W. Meng, X. S. Peng, Y. W. Wang, C. Z. Wang, X. F. Wang, and L. D. Zhang, Appl. Phys. A , 76, 119 (2003).
51. B. Zheng, Y. Y. Wu, P. D. Yang, and J. Liu, Adv. Mater. 14, 122 (2002).
52. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002).
53. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
54. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
55. B. Capella and G. Dietler, Surf. Sci. Rep. 34, 1 (1999).
56. B. Legrand and D. Stie´venard, Appl. Phys. Lett. 76, 1018 (2000).
57. J. H. Yen, I. C. Leu, C. C. Lin, and M. H. Hon, Appl. Phys. A, in press.
58. H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 260, 471 (1996).
59. J. H. Choi, T. Y. Lee, S. H. Choi, J.-H. Han, J.-B. Yoo, C.-Y. Park, T. Jung, S. G. Yu, W. Yi, I.-T. Han, and J. M. Kim, Diamond and Related Materials, 12, 794 (2003).
60. 賴信文, ”以原子力顯微術奈米氧化製作氧化鎳結構及其於奈米碳管選區成長的應用”, 清華大學材料科學工程學系碩士論文,民國九十二年六月。
61. V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, Appl. Phys. Lett. 76, 3555 (2000).
62. Y.-J. Xing, Z.-H. Xi, D.-P. Yu, Q.-L. Hang, H.-F. Yan, S.-Q. Feng, and Z.-Q. Xue, Chin. Phys. Lett. 19, 240 (2002).
63. X. Chen, Y. Xing, J. Xu, J. Xiang, and D. Yu, Chem. Phys. Lett. 374, 626 (2003).