簡易檢索 / 詳目顯示

研究生: 盧凱元
Lu, Kai-Yuan
論文名稱: 藉由熵及表面電漿處理垂直定向含矽嵌段共聚物薄膜之奈米微結構
Orienting Silicon-Containing Block Copolymer Thin Films via Entropy and Surface Plasma Treatment
指導教授: 何榮銘
Ho, Rong-Ming
口試委員: 蔣酉旺
Chiang, Yeo-Wan
莊偉綜
Chuang, Wei-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 93
中文關鍵詞: 嵌段共聚物薄膜表面電漿處理熵驅動
外文關鍵詞: PS-PDMS, entropic driven, surface plasma
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何有效控制大規模定向且有序的薄膜型態(特別是垂直定向的柱狀或板狀結構)為嵌段共聚物微影蝕刻術有效應用的關鍵。對於廣泛被使用之聚苯乙烯-聚二甲基矽氧烷嵌段共聚物自組裝薄膜而言,由於聚二甲基矽氧烷的低表面自由能,將導致含聚二甲基矽氧烷嵌段共聚物於自組裝時形成聚二甲基矽氧烷表面層,進而造成自組裝薄膜表層具平行排列的奈米微結構。本研究藉由熵-驅使定向方式,利用具有星狀結構的嵌段共聚物系統,平衡基材界面由於焓的效應對於嵌段共聚物組成成份的親合力,進而獲得垂直定向的奈米結構,並結合空氣電漿處理對星狀結構之嵌段共聚物自組裝薄膜表面,由交聯反應形成中性層,達到中和嵌段共聚物組成成份在空氣介面能的差異,以製備具高深寬比、垂直定向的奈米微結構薄膜。換言之,可結合高分子鏈的構型效應(熵-驅使)以及表面電漿處理(焓-驅使),達到含聚二甲基矽氧烷嵌段共聚物自組裝之有效控制,製備大規模定向且有序的薄膜型態。
    此外,藉由調整熱退火處理的時間之不同,首度觀察到由基材表面以及交聯的中性層同步成核成長之垂直定向柱狀結構,具有自我校準的行為。初時在成長至薄膜的中間時會產生錯位,形成螺旋與彎曲的柱狀結構,最終則可達到大規模定向且有序的垂直定向柱狀結構之薄膜型態。本研究主要為觀察薄膜形成垂直柱狀結構的成核成長及自我校準的過程,利用低掠角小角度X光散射實驗以及三維穿透式電子顯微鏡的影像重建技術探討其可能之自組裝行為,了解柱狀結構如何經過彎曲且自我校準後,形成垂直定向的奈米微結構。


    Controlling the orientation of nanostructured block copolymer (BCP) thin films is essential for next-generation lithography. However, obtaining BCP with perpendicular orientation remains a challenge because of the surface selectivity to the different blocks. This challenge is especially severe for silicon-containing BCPs which is notorious for its high surface energy difference between constituted blocks. Here, we demonstrate a new approach to achieve perpendicular orientation with high aspect ratio using a combination of architecture effect (entropy effect) and surface air plasma treatment (enthalpy effect). Specifically, perpendicular cylinders of star-block copolymers composed of polystyrene and poly(dimethylsiloxane) blocks span-thru from the bottom substrate to the top surface of the thin film can be formed after thermal annealing.
    Owing to the nucleation sites of the perpendicular nanostructure are fabricated from both interfaces of the thin film, the growth of the nanostructures would lead to a mismatch in the middle of the thin film, resulting in the formation of the spiral-like morphology and bended cylinders. Herein, we aim to examine and understand the nucleation and growth of the nanostructures nucleated from the SiO2 substrate and the air plasma-treated surfaces. Interestingly, the deformed nanostructures would be eliminated through a self-alignment process during the thermal annealing.

    摘要 I Abstract III Contents IV Figure Caption V Chapter 1 Introduction 1 1.1 Self-Assembly of BCPs 1 1.2 Silicon-Containing BCPs 7 1.3 Top-Down and Bottom-Up Methods for Nanopatterning 12 1.4 Entropy Effect on BCP Self-Assembly 24 1.5 Plasma Chemistry on Polymer Surfaces 27 Chapter 2 Objectives 31 Chapter 3 Experimental 33 3.1 Materials 33 3.2 Sample Preparation 37 3.3 Instrumentation 38 Chapter 4 Results and Discussion 42 4.1 Orientation Control of Thin Film via Air Plasma Treatment 42 4.2 Self-Alignment from Nucleation and Growth Mechanism 64 Chapter 5 Conclusions and Prospective 78 Chapter 6 References 80

    1. Bates, F. S.; Fredrickson, G. H., Block copolymer thermodynamics: theory and experiment. Annual review of physical chemistry 1990, 41 (1), 525-557.
    2. Hamley, I. W., The Physics of Block Copolymers. Oxford University Press: 1998.
    3. Park, C.; Yoon, J.; Thomas, E. L., Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44 (22), 6725-6760.
    4. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H., Block copolymer lithography: periodic arrays of~ 1011 holes in 1 square centimeter. Science 1997, 276 (5317), 1401-1404.
    5. Fogg, D.; Radzilowski, L.; Blanski, R.; Schrock, R.; Thomas, E., Fabrication of quantum dot/polymer composites: phosphine-functionalized block copolymers as passivating hosts for cadmium selenide nanoclusters. Macromolecules 1997, 30 (3), 417-426.
    6. Förster, S.; Antonietti, M., Amphiphilic block copolymers in structure‐controlled nanomaterial hybrids. Advanced Materials 1998, 10 (3), 195-217.
    7. Lipic, P. M.; Bates, F. S.; Hillmyer, M. A., Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. Journal of the American Chemical Society 1998, 120 (35), 8963-8970.
    8. Bita, I.; Yang, J. K.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K., Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 2008, 321 (5891), 939-943.
    9. Matsen, M. W., Effect of architecture on the phase behavior of AB-type block copolymer melts. Macromolecules 2012, 45 (4), 2161-2165.
    10. Nguyen, A. B.; Hadjichristidis, N.; Fetters, L. J., Static light scattering study of high-molecular weight 18-arm star block copolymers. Macromolecules 1986, 19 (3), 768-773.
    11. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J., Effect of arm number and arm molecular weight on the solid-state morphology of poly (styrene-isoprene) star block copolymers. Macromolecules 1986, 19 (1), 215-224.
    12. Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetters, L. J., Ordered bicontinuous double-diamond structure of star block copolymers: a new equilibrium microdomain morphology. Macromolecules 1986, 19 (8), 2197-2202.
    13. Herman, D. S.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J., A compositional study of the morphology of 18-armed poly(styrene-isoprene) star block copolymers. Macromolecules 1987, 20 (11), 2940-2942.
    14. Kasemo, B., Biological surface science. Surface science 2002, 500 (1), 656-677.
    15. Matsen, M.; Schick, M., Microphase separation in starblock copolymer melts. Macromolecules 1994, 27 (23), 6761-6767.
    16. Leibler, L., Theory of microphase separation in block copolymers. Macromolecules 1980, 13 (6), 1602-1617.
    17. Matsen, M.; Bates, F. S., Unifying weak-and strong-segregation block copolymer theories. Macromolecules 1996, 29 (4), 1091-1098.
    18. Cochran, E. W.; Garcia-Cervera, C. J.; Fredrickson, G. H., Stability of the gyroid phase in diblock copolymers at strong segregation. Macromolecules 2006, 39 (7).
    19. Kim, J. K.; Lee, J. I.; Lee, D. H., Self-assembled block copolymers: Bulk to thin film. Macromolecular Research 2008, 16 (4), 267-292.
    20. Park, S.; Lee, D. H.; Xu, J.; Kim, B.; Hong, S. W.; Jeong, U.; Xu, T.; Russell, T. P., Macroscopic 10-terabit–per–square-inch arrays from block copolymers with lateral order. Science 2009, 323 (5917), 1030-1033.
    21. Hamley, I., Ordering in thin films of block copolymers: Fundamentals to potential applications. Progress in Polymer Science 2009, 34 (11), 1161-1210.
    22. Matsen, M., Thin films of block copolymer. The Journal of chemical physics 1997, 106 (18), 7781-7791.
    23. Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K.-W.; Chang, T.; Ree, M., Structural analysis of block copolymer thin films with grazing incidence small-angle X-ray scattering. Macromolecules 2005, 38 (10), 4311-4323.
    24. Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T., Epitaxial phase transition of polystyrene-b-polyisoprene from hexagonally perforated layer to gyroid phase in thin film. Macromolecules 2005, 38 (25), 10532-10536.
    25. Park, H.-W.; Im, K.; Chung, B.; Ree, M.; Chang, T.; Sawa, K.; Jinnai, H., Direct observation of HPL and DG structure in PS-b-PI thin film by transmission electron microscopy. Macromolecules 2007, 40 (7), 2603-2605.
    26. Park, H.-W.; Jung, J.; Chang, T., New characterization methods for block copolymers and their phase behaviors. Macromolecular research 2009, 17 (6), 365-377.
    27. Lyakhova, K.; Sevink, G.; Zvelindovsky, A.; Horvat, A.; Magerle, R., Role of dissimilar interfaces in thin films of cylinder-forming block copolymers. The Journal of chemical physics 2004, 120 (2), 1127-1137.
    28. Huang, C.-I.; Lodge, T. P., Self-consistent calculations of block copolymer solution phase behavior. Macromolecules 1998, 31 (11), 3556-3565.
    29. Xu, T.; Hawker, C. J.; Russell, T. P., Interfacial interaction dependence of microdomain orientation in diblock copolymer thin films. Macromolecules 2005, 38 (7), 2802-2805.
    30. Ryu, D. Y.; Wang, J.-Y.; Lavery, K. A.; Drockenmuller, E.; Satija, S. K.; Hawker, C. J.; Russell, T. P., Surface modification with crosslinked random copolymers: minimum effective thickness. Macromolecules 2007, 40 (12), 4296-4300.
    31. Ham, S.; Shin, C.; Kim, E.; Ryu, D. Y.; Jeong, U.; Russell, T. P.; Hawker, C. J., Microdomain orientation of PS-b-PMMA by controlled interfacial interactions. Macromolecules 2008, 41 (17), 6431-6437.
    32. Albert, J. N.; Baney, M. J.; Stafford, C. M.; Kelly, J. Y.; Epps III, T. H., Generation of monolayer gradients in surface energy and surface chemistry for block copolymer thin film studies. Acs Nano 2009, 3 (12), 3977-3986.
    33. Ramanathan, M.; Nettleton, E.; Darling, S. B., Simple orientational control over cylindrical organic–inorganic block copolymer domains for etch mask applications. Thin Solid Films 2009, 517 (15), 4474-4478.
    34. Knoll, A.; Horvat, A.; Lyakhova, K.; Krausch, G.; Sevink, G.; Zvelindovsky, A.; Magerle, R., Phase behavior in thin films of cylinder-forming block copolymers. Physical Review Letters 2002, 89 (3), 035501.
    35. Fasolka, M. J.; Mayes, A. M., Block copolymer thin films: physics and applications 1. Annual Review of Materials Research 2001, 31 (1), 323-355.
    36. Niihara, K.-i.; Sugimori, H.; Matsuwaki, U.; Hirato, F.; Morita, H.; Doi, M.; Masunaga, H.; Sasaki, S.; Jinnai, H., A transition from cylindrical to spherical morphology in diblock copolymer thin films. Macromolecules 2008, 41 (23), 9318-9325.
    37. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A., " Dip-pen" nanolithography. science 1999, 283 (5402), 661-663.
    38. Vega, D. A.; Harrison, C. K.; Angelescu, D. E.; Trawick, M. L.; Huse, D. A.; Chaikin, P. M.; Register, R. A., Ordering mechanisms in two-dimensional sphere-forming block copolymers. Physical Review E 2005, 71 (6), 061803.
    39. Chen, Y.; Pepin, A., Nanofabrication: Conventional and nonconventional methods. Electrophoresis 2001, 22 (2), 187-207.
    40. Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G., Block copolymer lithography. Macromolecules 2014, 47 (1), 2-12.
    41. Bang, J.; Kim, S. H.; Drockenmuller, E.; Misner, M. J.; Russell, T. P.; Hawker, C. J., Defect-free nanoporous thin films from ABC triblock copolymers. Journal of the American Chemical Society 2006, 128 (23), 7622-7629.
    42. Tu, K.-H.; Bai, W.; Liontos, G.; Ntetsikas, K.; Avgeropoulos, A.; Ross, C. A., Universal pattern transfer methods for metal nanostructures by block copolymer lithography. Nanotechnology 2015, 26 (37), 375301.
    43. Sinturel, C.; Bates, F. S.; Hillmyer, M. A., High χ–low N block polymers: how far can we go? ACS Macro Letters 2015, 4 (9), 1044-1050.
    44. Lo, T.-Y., Krishnan, M., Lu, K.-Y., Ho, R.-M., Silicon-containing block copolymers for lithographic applications. Progress in Polymer Science 2017, invited.
    45. Chao, C.-C.; Ho, R.-M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L., Silicon oxy carbide nanorings from polystyrene-b-polydimethylsiloxane diblock copolymer thin films. Soft Matter 2010, 6 (15), 3582-3587.
    46. Jeong, J. W.; Park, W. I.; Kim, M.-J.; Ross, C.; Jung, Y. S., Highly tunable self-assembled nanostructures from a poly (2-vinylpyridine-b-dimethylsiloxane) block copolymer. Nano letters 2011, 11 (10), 4095-4101.
    47. Bates, C. M.; Seshimo, T.; Maher, M. J.; Durand, W. J.; Cushen, J. D.; Dean, L. M.; Blachut, G.; Ellison, C. J.; Willson, C. G., Polarity-switching top coats enable orientation of sub-10 nm block copolymer domains. Science 2012, 338 (6108), 775-779.
    48. Cushen, J. D.; Bates, C. M.; Rausch, E. L.; Dean, L. M.; Zhou, S. X.; Willson, C. G.; Ellison, C. J., Thin film self-assembly of poly (trimethylsilylstyrene-b-d,l-lactide) with sub-10 nm domains. Macromolecules 2012, 45 (21), 8722-8728.
    49. Guo, S.; Rzayev, J.; Bailey, T. S.; Zalusky, A. S.; Olayo-Valles, R.; Hillmyer, M. A., Nanopore and nanobushing arrays from ABC triblock thin films containing two etchable blocks. Chemistry of materials 2006, 18 (7), 1719-1721.
    50. Chuang, V. P.; Ross, C. A.; Gwyther, J.; Manners, I., Self‐assembled nanoscale ring arrays from a polystyrene‐b‐polyferrocenylsilane‐b‐poly (2‐vinylpyridine) triblock terpolymer thin film. Advanced Materials 2009, 21 (37), 3789-3793.
    51. Choi, H. K.; Gwyther, J.; Manners, I.; Ross, C. A., Square arrays of holes and dots patterned from a linear ABC triblock terpolymer. ACS nano 2012, 6 (9), 8342-8348.
    52. Yu, X.; Yue, K.; Hsieh, I.-F.; Li, Y.; Dong, X.-H.; Liu, C.; Xin, Y.; Wang, H.-F.; Shi, A.-C.; Newkome, G. R., Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering. Proceedings of the National Academy of Sciences 2013, 110 (25), 10078-10083.
    53. Dong, X.-H.; Ni, B.; Huang, M.; Hsu, C.-H.; Chen, Z.; Lin, Z.; Zhang, W.-B.; Shi, A.-C.; Cheng, S. Z., Chain overcrowding induced phase separation and hierarchical structure formation in fluorinated polyhedral oligomeric silsesquioxane (FPOSS)-based giant surfactants. Macromolecules 2015, 48 (19), 7172-7179.
    54. Chen, I.-J.; Lindner, E., The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces. Langmuir 2007, 23 (6), 3118-3122.
    55. Chan, V. Z.-H.; Hoffman, J.; Lee, V. Y.; Iatrou, H.; Avgeropoulos, A.; Hadjichristidis, N.; Miller, R. D.; Thomas, E. L., Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors. Science 1999, 286 (5445), 1716-1719.
    56. Chao, C.-C.; Wang, T.-C.; Ho, R.-M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L., Robust block copolymer mask for nanopatterning polymer films. ACS nano 2010, 4 (4), 2088-2094.
    57. Whitesides, G. M.; Ismagilov, R. F., Complexity in chemistry. science 1999, 284 (5411), 89-92.
    58. Köhler, M.; Fritzsche, W., Nanotechnology: an introduction to nanostructuring techniques. John Wiley & Sons: 2008.
    59. Nalwa, H. S., Handbook of Thin Film Materials: Nanomaterials and magnetic thin films. Academic Press: 2002.
    60. Xia, Y.; Whitesides, G. M., Soft lithography. Annual review of materials science 1998, 28 (1), 153-184.
    61. Brehmer, M.; Conrad, L.; Funk, L., New developments in soft lithography. Journal of dispersion science and technology 2003, 24 (3-4), 291-304.
    62. Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X.; Ingber, D. E., Soft lithography in biology and biochemistry. Annual review of biomedical engineering 2001, 3 (1), 335-373.
    63. Renault, J.; Bernard, A.; Bietsch, A.; Michel, B.; Bosshard, H.; Delamarche, E.; Kreiter, M.; Hecht, B.; Wild, U., Fabricating arrays of single protein molecules on glass using microcontact printing. The Journal of Physical Chemistry B 2003, 107 (3), 703-711.
    64. Mayer, M.; Yang, J.; Gitlin, I.; Gracias, D. H.; Whitesides, G. M., Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins. Proteomics 2004, 4 (8), 2366-2376.
    65. Ginger, D. S.; Zhang, H.; Mirkin, C. A., The evolution of dip‐Pen nanolithography. Angewandte Chemie International Edition 2004, 43 (1), 30-45.
    66. Lee, K.-B.; Park, S.-J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M., Protein nanoarrays generated by dip-pen nanolithography. Science 2002, 295 (5560), 1702-1705.
    67. Hyun, J.; Kim, J.; Craig, S. L.; Chilkoti, A., Enzymatic nanolithography of a self-assembled oligonucleotide monolayer on gold. Journal of the American Chemical Society 2004, 126 (15), 4770-4771.
    68. Macilwain, C., Nanotech thinks big. Nature 2000, 405 (6788), 730-732.
    69. Glass, R.; Möller, M.; Spatz, J. P., Block copolymer micelle nanolithography. Nanotechnology 2003, 14 (10), 1153.
    70. Park, J.-W.; Thomas, E. L., Anisotropic micellar nanoobjects from reactive liquid crystalline rod−coil diblock copolymers. Macromolecules 2004, 37 (10), 3532-3535.
    71. Kralchevsky, P. A.; Denkov, N. D., Capillary forces and structuring in layers of colloid particles. Current Opinion in Colloid & Interface Science 2001, 6 (4), 383-401.
    72. Hanarp, P.; Sutherland, D. S.; Gold, J.; Kasemo, B., Control of nanoparticle film structure for colloidal lithography. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003, 214 (1), 23-36.
    73. Moore, G., Cramming more components onto integrated circuits. Electronics 1965, 38, 114–116.
    74. Sanders, D. P., Advances in patterning materials for 193 nm immersion lithography. Chemical reviews 2010, 110 (1), 321-360.
    75. Mansky, P.; Liu, Y.; Huang, E.; Russell, T.; Hawker, C., Controlling polymer-surface interactions with random copolymer brushes. Science 1997, 275 (5305), 1458-1460.
    76. She, M.-S.; Lo, T.-Y.; Ho, R.-M., Long-range ordering of block copolymer cylinders driven by combining thermal annealing and substrate functionalization. ACS nano 2013, 7 (3), 2000-2011.
    77. Ji, S.; Liu, C.-C.; Son, J. G.; Gotrik, K.; Craig, G. S.; Gopalan, P.; Himpsel, F.; Char, K.; Nealey, P. F., Generalization of the use of random copolymers to control the wetting behavior of block copolymer films. Macromolecules 2008, 41 (23), 9098-9103.
    78. Ross, C.; Jung, Y.; Chuang, V.; Ilievski, F.; Yang, J.; Bita, I.; Thomas, E.; Smith, H. I.; Berggren, K.; Vancso, G., Si-containing block copolymers for self-assembled nanolithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2008, 26 (6), 2489-2494.
    79. Jung, Y. S.; Ross, C. A., Orientation-controlled self-assembled nanolithography using a polystyrene−polydimethylsiloxane block copolymer. Nano Letters 2007, 7 (7), 2046-2050.
    80. Kim, E.; Kim, W.; Lee, K. H.; Ross, C. A.; Son, J. G., A Top coat with solvent annealing enables perpendicular orientation of Sub‐10 nm microdomains in Si‐containing block copolymer thin films. Advanced Functional Materials 2014, 24 (44), 6981-6988.
    81. Zhang, J.; Clark, M. B.; Wu, C.; Li, M.; Trefonas III, P.; Hustad, P. D., Orientation control in thin films of a high-χ block copolymer with a surface active embedded neutral layer. Nano letters 2015, 16 (1), 728-735.
    82. Matsen, M. W.; Thompson, R., Equilibrium behavior of symmetric ABA triblock copolymer melts. The Journal of chemical physics 1999, 111 (15), 7139-7146.
    83. Mayes, A. M.; Olvera de la Cruz, M., Microphase separation in multiblock copolymer melts. The Journal of chemical physics 1989, 91 (11), 7228-7235.
    84. Khanna, V.; Cochran, E. W.; Hexemer, A.; Stein, G.; Fredrickson, G.; Kramer, E.; Li, X.; Wang, J.; Hahn, S., Effect of chain architecture and surface energies on the ordering behavior of lamellar and cylinder forming block copolymers. Macromolecules 2006, 39 (26), 9346-9356.
    85. Matsen, M., Architectural effect on the surface tension of an ABA triblock copolymer melt. Macromolecules 2010, 43 (3), 1671.
    86. Lo, T.-Y.; Dehghan, A.; Georgopanos, P.; Avgeropoulos, A.; Shi, A.-C.; Ho, R.-M., Orienting block copolymer thin films via entropy. Macromolecules 2016, 49 (2), 624-633.
    87. Friedrich, J.; Loeschcke, I.; Frommelt, H.; Reiner, H.-D.; Zimmermann, H.; Lutgen, P., Ageing and degradation of poly (ethylene terephthalate) in an oxygen plasma. Polymer degradation and stability 1991, 31 (1), 97-114.
    88. Mittal, K. L., Metallized Plastic: Fundamentals and Applications. Taylor & Francis: 1997.
    89. Drost, H., Plasmachemie. Akademie-Verlag: 1978.
    90. McTaggart, F. K., Plasma chemistry in electrical discharges. 1967.
    91. Venugopalan, M., Reactions under plasma conditions. Wiley-Interscience: 1971.
    92. Vickers, J. A.; Caulum, M. M.; Henry, C. S., Generation of hydrophilic poly (dimethylsiloxane) for high-performance microchip electrophoresis. Analytical Chemistry 2006, 78 (21), 7446-7452.
    93. Yasuda, H., Plasma polymerization. Academic Press: 1985.
    94. Yasuda, H.; Wang, C., Plasma polymerization investigated by the substrate temperature dependence. Journal of Polymer Science: Polymer Chemistry Edition 1985, 23 (1), 87-106.
    95. Osada, Y., Plasma polymerization processes. Elsevier Science Ltd: 1992; Vol. 3.
    96. Zilliox, J.; Roovers, J.; Bywater, S., Preparation and properties of polydimethylsiloxane and its block copolymers with styrene. Macromolecules 1975, 8 (5), 573-578.
    97. Bellas, V.; Iatrou, H.; Hadjichristidis, N., Controlled anionic polymerization of hexamethylcyclotrisiloxane. Model linear and miktoarm star co-and terpolymers of dimethylsiloxane with styrene and isoprene. Macromolecules 2000, 33 (19), 6993-6997.
    98. Georgopanos, P.; Lo, T.-Y.; Ho, R.-M.; Avgeropoulos, A., Synthesis, molecular characterization and self-assembly of (PS-b-PDMS)n type linear (n= 1, 2) and star (n= 3, 4) block copolymers. Polymer Chemistry 2017, 8, 843-850.
    99. Wu, S., Surface and interfacial tensions of polymer melts. II. Poly (methyl methacrylate), poly (n-butyl methacrylate), and polystyrene. The Journal of Physical Chemistry 1970, 74 (3), 632-638.
    100. Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R., Polymer handbook. Wiley New York etc: 1989; Vol. 7.
    101. Huang, E.; Russell, T.; Harrison, C.; Chaikin, P.; Register, R.; Hawker, C.; Mays, J., Using surface active random copolymers to control the domain orientation in diblock copolymer thin films. Macromolecules 1998, 31 (22), 7641-7650.
    102. She, H.; Malotky, D.; Chaudhury, M. K., Estimation of adhesion hysteresis at polymer/oxide interfaces using rolling contact mechanics. Langmuir 1998, 14 (11), 3090-3100.
    103. Abbasian, A.; Ghaffarian, S.; Mohammadi, N.; Fallahi, D., Sensitivity of surface free energy analysis methods to the contact angle changes attributed to the thickness effect in thin films. Journal of applied polymer science 2004, 93 (4), 1972-1980.
    104. Li, Y.; Pham, J. Q.; Johnston, K. P.; Green, P. F., Contact angle of water on polystyrene thin films: effects of CO2 environment and film thickness. Langmuir 2007, 23 (19), 9785-9793.
    105. Owens, D. K.; Wendt, R., Estimation of the surface free energy of polymers. Journal of applied polymer science 1969, 13 (8), 1741-1747.
    106. Kaelble, D., Dispersion-polar surface tension properties of organic solids. The Journal of Adhesion 1970, 2 (2), 66-81.
    107. Wu, S. In Calculation of interfacial tension in polymer systems, Journal of Polymer Science: Polymer Symposia, Wiley Online Library: 1971; pp 19-30.
    108. Sabadil, H., Die Schichterscheinungen in der positiven Säule der Sauerstoff‐Niederdruck‐Entladung. Beiträge aus der Plasmaphysik 1966, 6 (5), 305-317.
    109. Friedrich, J.; Kühn, G.; Gähde, J., Untersuchungen zur Plasmaätzung von Polymeren. Teil I: Strukturänderungen von Polymeren nach Plasmaätzung. Acta Polymerica 1979, 30 (8), 470-477.
    110. Kosobrodova, E. A.; Kondyurin, A. V.; Fisher, K.; Moeller, W.; McKenzie, D. R.; Bilek, M. M., Free radical kinetics in a plasma immersion ion implanted polystyrene: theory and experiment. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2012, 280, 26-35.
    111. Bodas, D.; Khan-Malek, C., Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation. Sensors and Actuators B: Chemical 2007, 123 (1), 368-373.
    112. Dupont-Gillain, C. C.; Adriaensen, Y.; Derclaye, S.; Rouxhet, P., Plasma-oxidized polystyrene: wetting properties and surface reconstruction. Langmuir 2000, 16 (21), 8194-8200.
    113. Gennes, P. G. d.; Prost, J., The Physics of Liquid Crystals. Clarendon Press: 1995.
    114. Vu, T.; Mahadevapuram, N.; Perera, G. M.; Stein, G. E., Controlling domain orientations in thin films of AB and ABA block copolymers. Macromolecules 2011, 44 (15), 6121-6127.

    QR CODE