簡易檢索 / 詳目顯示

研究生: 張顧齡
Ku-Ling Chang
論文名稱: 被覆氮化鉻鋼材的電化學行為研究
Electrochemical studies of the CrN coating on steels
指導教授: 施漢章
Han C. Shih
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 93
語文別: 英文
論文頁數: 110
中文關鍵詞: 氮化鉻金屬蒸鍍真空電弧離子源熱氧化極化阻抗電化學阻抗頻譜
外文關鍵詞: chromium nitride, MEVVA, thermal oxidation, polarization resistance, EIS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用陰極電弧法在鋼材上沉積CrN已廣泛的被用於改進鋼材的抗磨耗及抗腐蝕。本研究將針對披覆CrN的鋼材在腐蝕溶液中的電化學行為作為主軸再作延伸性的探討,內容共包含了「MEVVA離子源植入鉻中間層」及「熱氧化CrN鍍膜」的效應對披覆CrN鋼材的電化學行為的影響。
    針對披覆CrN的鋼材施以中間層方面,MEVVA離子源結合陰極電弧是一種新穎的表面改質方法,透過MEVVA植入鉻的表面改質對披覆CrN鋼材的腐蝕行為進行調查。對於AISI 4140鋼及Cr/steel,CrN/steel, CrN/Cr/steel的鍍膜試片於0.1N的HCl水溶液中進行腐蝕實驗。對於MEVVA植入鉻中間層以及CrN鍍膜的組成及微結構,採用XRD和TEM對其加以觀察。極化阻抗值(Rp)將被量測並與使用等效電路模擬EIS量測所得結果互相比較,以了解MEVVA植入鉻效應對於CrN/Cr/steel腐蝕機制的影響。結果指出披覆CrN鋼材的腐蝕阻抗因MEVVA植入鉻而顯著的提升。
    針對熱氧化CrN鍍膜方面而言,分別將試片置於空氣氣氛下於500 oC和800 oC氧化1小時。熱氧化效應對於披覆CrN的AISI 304鋼材在水溶液中的腐蝕行為的影響將被觀察。所有試片的腐蝕阻抗為透過EIS方法所求得在0.5M H2SO4 + 1M NaCl水溶液中的極化阻抗值加以比較。結果指出披覆CrN的鋼材在經過500 oC氧化後腐蝕阻抗明顯降低,相較之下於800 oC氧化條件下,則呈現比原本未經熱氧化及500 oC氧化後更好的腐蝕阻抗。經800 oC的熱氧化之後,於CrN鍍膜上形成一層厚的氧化層將有助於提升原本披覆CrN鋼材的抗蝕能力。


    Using cathodic arc plasma to deposit CrN on the steel has been explored and extensively studied to improve the wear and corrosion resistance of the steel structures. The extended research for the electrochemical behavior of CrN coated steel in aggressive solutions were investigated, and can be divided into two categories: The effects of “Metal vapor vacuum arc (MEVVA) implanted Cr interlayer” and “ thermal oxidation of CrN coatings “ on the electrochemical behavior of CrN coated steel .
    In the field of the interlayer function for the CrN coated steel, MEVVA source implantation is a novel and profitable surface modification process coupled with the cathodic arc plasma. The effect of the Cr implanted by MEVVA (Cr/steel) on the corrosion behavior of CrN/steel through the surface modification has been investigated. Both AISI 4140 steel and its coated assemblies of Cr/steel, CrN/steel, and CrN/Cr/steel were evaluated in an aerated 0.1N HCl solution. The composition and structure of the MEVVA implanted chromium and the cathodic arc plasma deposited CrN on steel were examined by XRD and TEM. The polarization resistance (Rp) of all samples was measured and compared with the results obtained from electrochemical impedance spectroscopy (EIS) simulated by an equivalent circuit to interpret the effect of MEVVA implanted chromium on the corrosion mechanism of the CrN/Cr/steel. The results indicated that the corrosion resistance of the CrN coated steel was significantly enhanced by the MEVVA implanted chromium in the CrN/Cr/steel assembly.
    In the field of thermal oxidation of CrN coatings, thermal oxidation in air was carried out at the temperature of 500oC and 800oC for 1 hour. The effect of the thermal oxidation on the aqueous corrosion behavior of the CrN coated AISI 304 steel assembly was investigated in this study. The corrosion resistance of all samples was compared in terms of a polarization resistance resulting from EIS in a mixture of 0.5M H2SO4 + 1M NaCl solution. The results indicated that the corrosion resistance of the CrN/304s oxidized at 500oC is significantly reduced. On the contrary, the electrochemical behavior of the CrN/304s oxidized at 800oC shows better corrosion resistance than the one oxidized at 500oC and as-deposited steel. After thermal oxidation at 800oC, the oxide layer formed on top of CrN coating enhances the corrosion protection of the CrN coated steel.

    Abstract (in Chinese) i Abstract (in English) iii Acknowledgement (in Chinese) v Contents vi List of Figures viii List of Tables xi Chapter 1. Introduction 1 Chapter 2. Theoretical basis 8 2.1 Surface modification techniques 8 2.1.1 Cathodic arc plasma deposition (CAPD) 8 2.1.2 Metal vapor vacuum arc (MEVVA) ion implanter 13 2.2 Application of electrochemical techniques on corrosion tests 16 2.2.1 Linear polarization 16 2.2.2 Electrochemical impedance spectroscopy 18 Chapter 3. Instrumentation and characterization 34 3.1 Preparation of the coatings 35 3.2 Characterization 36 3.2.1. X-ray diffraction (XRD) 36 3.2.2. Scanning electron microscopy (SEM) 37 3.2.3. Transmission electron microscopy (TEM) 37 3.2.4. X-ray photoelectron spectroscopy (XPS) 37 3.2.5. Secondary ion mass spectroscopy (SIMS) 38 3.2.6. Electron probe X-ray microanalyser (EPMA) 38 3.2.7. Electrochemical measurements 38 Chapter 4. Results and discussion 40 4.1 The effect of MEVVA implanted Cr on the electrochemical behavior of CrN coated steel by cathodic arc deposition 40 4.1.1. Microstructural characterization of CrN coated steel 40 4.1.2. Electrochemical behavior 46 4.2 Electrochemical behavior of thermally oxidized CrN coatings deposited on steel by cathodic arc deposition 72 4.2.1. Morphology and characterization of oxidized CrN coatings 72 4.2.2. Electrochemical characterizations 83 Chapter 5. Conclusions 94 Recommendations to future work 96 References 97 Publication list 106 Vita 110

    1. S.S. Kim, G. J. Han, Y. G. Lee, “ Deposition behaviours of CrN films on the edge area by cathodic arc plasma deposition process” , Thin Solid Films 334 (1998)133.
    2. H. Holleck, “Material selection for hard coatings”, J. Vac. Sci. Technol. A 4 (1986) 2661.
    3. H.A. Jehn, M.E. Baumgartner, “corrosion studies with hard coating substrate systems”, Surf. Coat. Technol. 54–55 (1992)108.
    4. J.P. Celis, D. Dress, E. Maesen, J.R. Ross,” Quantitative -determination of through-coating porosity in thin ceramic physically vapor-deposited coatings”, Thin Solid Films 224, (1993)58.
    5. S. Han, J.H. Lin, D.Y. Wang, F.-H. Lu, H.C. Shih, “Corrosion resistance of chromium nitride on low alloy steels by cathodic arc deposition”, J. Vac. Sci. Technol. A 19(4) (2001)1442.
    6. R. Brown, N.M. Alias, R. Fontana,” Effect of composition and thickness on corrosion behavior of tin and ZrN thin-films”, Surf. Coat. Technol. 62(1993)467.
    7. J. Piippo, B. Elsener, H. Bohni, “Electrochemical characterization of tin coatings”, Surf. Coat. Technol. 61 (1993)43.
    8. I.M. Notter, ‘Polarization resistance methods for measurement of the porosity of thin metal coatings”D.R. Gaber, Corros. Sci. 34 (1993)851.
    9. W. Tato, D. Landolt, “Electrochemical determination of the porosity of single and duplex PVD coatings of titanium and titanium nitride on brass”, J. Electrochem. Soc. 145 (1998)4173.
    10. H.A. Jehn, “Improvement of the corrosion resistance of PVD hard coating-substrate systems”, Surf. Coat. Technol. 125 (2000)212.
    11. F. Vacandio, Y. Massiani, P. Gergaud, O. Thomas, “Stress, porosity measurements and corrosion behaviour of AlN films deposited on steel substrates”, Thin Solid Films 359 (2000)221.
    12. M.A. Pech-Canul, S. Turgoose, “The electrochemical impedance response of film-covered mild-steel in neutral aerated solutions”, Corros. Sci. 35 (1993)1445.
    13. R.S. Lillard, J. Kruger, W.S. Tait, P.J. Moran, “Using local electrochemical impedance spectroscopy to examine coating failure”, Corrosion 51 (1995)251.
    14. F. Mansfeld, M.W. Kendig, S. Tsai, “Evaluation of corrosion behavior of coated metals with AC impedance measurement”, Corrosion 38 (1982)478.
    15. C. Liu, A. Leyland, Q. Bi, A. Matthews, “Corrosion resistance of multi-layered plasma-assisted physical vapour deposition TiN and CrN coatings”, Surf. Coat. Technol. 141 (2001)164.
    16. P.R. Roberge, E. Halliop, V.S. Sastri, “Corrosion of mild-steel using electrochemical impedance spectroscopy data-analysis”, Corrosion 48 (1992)447.
    17. C. Deslouis, M.M. Musiani, B. Tribollet, M.A. Vorotyntsev, “Comparison of the AC-impedance of conducting polymer-films studies as electrode-supported and freestanding members”, J. Electrochem. Soc. 142 (1995)1902.
    18. I. Thompson, D. Campbell, “Interpreting Nyquist responses from defective coatings on steel substrates”, Corros. Sci. 36 (1994)187.
    19. F. Mansfeld, “Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer-coatings”, J. Appl. Electrochem. 25 (1995)187.
    20. J.L. He, C.H. Chu, H.L. Wang, M.H. Hon, “Corrosion protection by PECVD-SIOX as a top coating on tin-coated steel”, Surf. Coat. Technol. 63 (1994)15.
    21. L. van Leaven, M.N. Alias, R. Brown, “Corrosion behavior of ion plated and implanted films”, Surf. Coat. Technol. 53 (1992)25 .
    22. B. Navinsek , P. Panjan, I. Milosev, “ PVD coatings as an environmentally clean alternative to electroplating and electroless processes” , Surf. Coat. Technol. 116-119 (1999)476.
    23. J. Creus , H. Idrissi ,H. Mazille , F. Sanchette , P. Jacquot, “ Improvement of the corrosion resistance of CrN coated steel by an interlayer” , Surf. Coat. Technol. 107(1998)183.
    24. F. Vacandio , Y. Massiani , P. Gravier ,S. Rossi , P.L. Bonora , L. Fedrizzi, “ Improvement of the electrochemical behaviour of AlN films produced by reactive sputtering using various under-layers” , Electrochim. Acta. 46 (2001)3827.
    25. S. Han , J.H. Lin , S.H. Tsai , S.C. Chung , D.Y. Wang , F.H. Lu , H.C. Shih ,” Corrosion and tribological studies of chromium nitride coated on steel with an interlayer of electroplated chromium”, Surf. Coat. Technol. 133-134 (2000)460.
    26. M. Herranen , U. Wicklund , J.O. Carlson , S. Hogmark,” Corrosion behaviour of Ti/TiN multilayer coated tool steel”, Surf. Coat. Technol. 99 (1998)191.
    27. J.-P. Hirvonen, M. Nastasi, J.W. Mayer, “ Microstructure of ion-bombarded Fe-Ti and Fe-Ti-C multilayered films”, J. Appl. Phys.,60 (1986)980.
    28. J.K. Hirvonen, C.A. Carosella, R.A. Kant, I. Singer, R. Vardiman, B.B. Rath,” Improvement of metal properties by ion implantation”, Thin Solid Films 63 (1979)5.
    29. Zhang T. , Zhang H. , Ji Changzhou , Zhang X., Wu Y. , Ma F. , Liang H. , Shou H. , Shi J. ,” Industrialization of MEVVA source ion implantation” , Surf. Coat. Technol. 128-129 (2000)1.
    30. Y. Li , T. Zhang , X. Wang ,” Structure of corrosion resistance on H13 steels with titanium and carbon implantation” , Surf. Coat. Technol . 128-129 (2000)205.
    31. Zhang T. , Wu Y. , Zhao Z. , Deng Z. ,” The ternary Ti(Zr,N) phases formation and modification of TiN coatings by Zr+ MEVVA ion implantation”, Surf. Coat. Technol.131 (2000)326.
    32. D.Q. Peng, X.D. Bai, Q.G. Zhou, X. Y. Liu, R.H. Yu, D.L. Zhang, ”Studies on the corrosion behavior of cesium-implanted zirconium”, J. Nucl. Mater. 324 (2004)71.
    33. T. Zhang, J. Xie, C.Ji, J. Chen, H. Xu, J. Li, G. Sun, H.X. Zhang,” Influence of the structure of implanted steel with Y, Y+C and Y+Cr on the behaviors of wear, oxidation and corrosion resistance”, Surf. Coat. Technol . 72 (1995)93.
    34. T. Zhang, X. Wang , H. Liang, H. Zhang, G. Zhou, G. Sun, W. Zhao, J. Xue,” Behavior of MEVVA metal ion implantation for surface medication of materials”, Surf. Coat. Technol . 83(1996)280.
    35. I.G. Brown, X. Godechot, K.M. Yu,” Novel Metal-ion surface modification technique” , Appl. Phys. Lett. 58 (1991)1392.
    36. J-P. Hirvonen ,D. Ruck , S. Yan , A. Mahiout , P. Torri , J. Likonen ,” Corrosion resistance of N-,Cr- or Cr+N-implanted AISI 420 stainless steel”, Surf. Coat. Technol. 74-75 (1995)760.
    37. V. Ashworth, D. Baxter, W.A. Grant., R.P.M. Procter, T.C. Wellington, ” The effect of ion implantation on the corrosion behavior of pure iron-II. Chromium ion implantation”, Corros. Sci. 16 (1976)775.
    38. E. Huber, S. Hofmann, “Oxidation behavior of chromium-based nitride coatings”, Surf. Coat.Technol.68-69(1994) 64.
    39. P. Panjan, B. NavinŠek, A. Cvelbar, A. Zalar, I. MiloŠev, “High-temperature oxidation of TiN/CrN multilayers reactively sputtered at low temperature”, Surf. Coat.Technol. 98(1998) 1497.
    40. F. H. Lu, H. Y. Chen, “Phase changes of CrN films annealed at high temperature under controlled atmosphere”, Thin Solid Films 398 (2001) 368.
    41. W. P. Hsieh , C. C. Wang , C. H. Lin , F. S. Shieu ,” Oxidation of arc ion-plated CrN coatings at elevated temperatures “, J. Electrochem Soc. 149 (2002) 234.
    42. W. Herr, E. Broszeit, “The influence of a heat treatment on the microstructure and mechanical properties of sputtered coatings”, Surf. Coat.Technol. 97 (1997)335.
    43. J. Vetter , R. Knaup , H. Dwuletzki , E. Schneider , S. Vogler , “Hard coatings for lubrication reduction in metal forming”, Surf. Coat. Technol. 86-87 (1996)739.
    44. D. Y. Wang , J. H. Lin, W. Y. Ho , “Study on chromium oxide synthesized by unbalanced magnetron sputtering”, Thin Solid Films 332 (1998) 295-299.
    45. J. L. Vossen, E. Kern,” Thin film process II ” Academic press, (1991).
    46. D. M. Mattox, “Interface formation during thin film deposition ” J. Appl. Phys. 34(1963)2493.
    47. T. Takagi, ” Role of ions in ion-based film formation” Thin Solid Films 92 (1982) 1.
    48. A. Anders, “ Handbook of plasma immersion ion implantation and deposition” , John Wiley & Sons, New York, (2000).
    49. P. K. Chu, C. Chan, “Applications of plasma immersion ion implantation in microelectronics - a brief review ” Surf. Coat. Technol. 136 (2001)151.
    50. R. Gunzel, U. Hornauer, A. I. Rogozin, V. T. Astrelin, “Basic investigations of an integrated modulator for plasma immersion ion implantation” Surf. Coat. Technol. 136 (2001)74.
    51. I.G. Brown, “Vacuum-arc ion sources”, Rev. Sci. Instrum. 65(10) (1994)3061.
    52. I.G. Brown, A. Anders, “Recent advances in vacuum are ion sources ” Surf. Coat. Technol. 84 (1996)550.
    53. K.W. Weng , C. L. Chang , D. Y. Wang ,” Effect of ion energy on degradation of diamond-like carbon films exposed to high-energy bombardment from an ion implanter”, Diamond Related Mater. , 11, (2002)1447.
    54. U. S. Chen, J. H. Lin, H. C. Shih, “Exploring metal vapor vacuum arc implanted copper to catalyze electroless-plated copper film on a TaN’FSG’Si assembly”, J. Vac. Sci. Technol. B, 21(3)(2003)1129.
    55. M. Stern, A. L. Geary, “I. A theoretical analysis of the shape of polarization curves”, J. Electrochem. Soc.104(1) (1957)56.
    56. W. S. Tait,” An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists”, Pair O Docs, Wisconsin,(1994).
    57. J. R. Macdonald, “Impedance Spectroscopy”, John Wiley & Sons, New York, (1987).
    58. D. A. Jones, “Principle and Prevention of Corrosion”, 2nd ed., Simon & Schuster, (1996).
    59. F. Mansfeld, “Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection”, Electrochim. Acta , 35 (1990)1533.
    60. H.N. Zhu, B. X. Liu,” CrSi2 films synthesized by high current Cr ion implantation and their physical properties”, Appl. Surf. Sci. 161,(2000)240.
    61. S. Han , H.Y. Chen , K.L. Chang , K.W. Weng , D. Y. Wang , F.H. Lu , H.C. Shih,” Effects of MEVVA-implanted chromium on the structure and properties of CrN film”, Thin Solid Films. 447-448 (2004)425.
    62. C. Liu, Q. Bi, A. Matthews,” EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5N NaCl aqueous solution”, Corros. Sci. 43 (2001)1953.
    63. H. Dong, Y. Sun, T. Bell, ” Enhanced corrosion resistance of duplex coatings, Surf. Coat. Technol. 90 (1997)91.
    64. R.M. souto, H. Alanyali,” Electrochemical characteristics of steel coated with TiN and TiAlN coatings”, Corros. Sci. 42 (2000)2201.
    65. C. Liu, Q. Bi, A. Leyland, A. Matthews,” An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modeling”,Corros.Sci.45 (2003)1243.
    66. C. Liu, Q. Bi, A. Leyland, A. Matthews,” An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5N NaCl aqueous solution: Part II. EIS interpretation of corrosion behaviour”, Corros. Sci. 45 (2003)1257.
    67. D. K. Merl, P. Panjan, M. Čekada, M. Maček,” The corrosion behavior of Cr-(C,N) PVD hard coatings deposited on various substrates”, Electrochim. Acta. 49 (2004)1527.
    68. I. MiloŠev , H. –H. Strehblow , B. NavinŠek , “Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation” , Thin Solid Films 303 (1997)246.
    69. I. Bert□ti ,“Characterization of nitride coatings by XPS”, Surf. Coat. Technol. 151-152 (2002)194.
    70. L. Cunha, M. Andritschky, L. Rebouta, K. Pischow, “Corrosion of CrN and TiAlN coatings in chloride-containing atmospheres”, Surf. Coat.Technol. 116-119 (1999)1152.
    71. I. MiloŠev , H. –H. Strehblow , B. NavinŠek , “XPS in the study of high-temperature oxidation of CrN and TiN hard coatings” , Surf. Coat. Technol. 74-75 (1995)897.
    72. F. H. Lu, H. Y. Chen, C. H. Hung, “Degradation of CrN films at high temperature under controlled atmosphere”, J. Vac. Sci. Technol. A 21(3) (2002)671.
    73. E. Huber, S. Hofmann, “Oxidation behavior of chromium-based nitride coatings”, Surf. Coat. Technol. 68-69 (1994)64.
    74. T. Kacsich, K.-P. Lieb, “Oxidation of thin CrN and Cr2N films analyzed via nuclear-reaction analysis and Rutherford backscattering spectroscopy”, Thin Solid Films 245 (1994)4.
    75. K. J. Vetter, “Electrochemical Kinetics”, Academic, New York, (1961).
    76. K. L. Chang, S. Han, J. H. Lin, J.W. Hsu, H. C. Shih, “The effect of MEVVA implanted Cr on the corrosion resistance of CrN coated low alloy steel by cathodic arc plasma deposition”, Surf. Coat. Technol. 172 (2003)72.
    77. C. Liu, Q. Bi, H. Ziegele, A. Leyland, A. Matthews , “Structure and corrosion properties of PVD Cr-N coatings”, J. Vac. Sci. Technol. A 20(3) (2002)772.
    78. A. J. Bard, L. R. Faulanker, “Electrochemical methods”, Wiley, New York,(1987).
    79. S. C. Chung, S.L. Sung, C.C. Hsien, H.C. Shih, “Application of EIS to the initial stages of atmospheric zinc corrosion”, J. Appl. Electrochem. 30 (2000)607.
    80. J. Creus , H. Mazille , H. Idrissi , “Porosity evaluation of protective coatings onto steel, through electrochemical techniques”, Surf. Coat. Technol. 130 (2000)224.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE