簡易檢索 / 詳目顯示

研究生: 蔡秉勳
論文名稱: 使用雙可旋轉相位延遲器及固定極化器之最佳化極化量測儀
An Optimized Polarimeter using Double Rotatable Retarder and Fixed Polarizer
指導教授: 楊尚達
口試委員: 趙喣
許佳振
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 70
中文關鍵詞: 極化量測儀雙可旋轉相位延遲器及固定極化器最佳化
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 極化量測儀(Polarimeter)為量測光極化態(State of Polarization)之架構。典型的極化量測儀藉由記錄待測光在四個特定極化態(0線極化、90線極化、45線極化、以及右旋正圓極化)的相對能量分量,以求得代表光極化態的史托克斯參數(Stokes parameter)。本論文提出「極化態量測角度誤差梯度」以定量分析所有可能之待測極化態遭受量測雜訊的影響程度。其次以Monte Carlo演算法找出可對應到「最小量測角度誤差梯度平均值」的四個最佳橢圓極化態分量組合。為了在實驗上以之取代典型之0線極化、90線極化、45線極化、右旋正圓極化組合,我們進一步修改典型之「雙可旋轉式相位延遲器與固定極化器」(Double Rotatable Retarder and Fixed Polarizer, DRFP)架構,將其中一個四分之一波片(90相位延遲器)改為半波片(180相位延遲器),以便量測待測光在任意橢圓極化態的能量分量。此一量測技術我們稱之為「最佳化DRFP極化量測儀」(Optimized DRFP Polarimeter)。最後以實驗驗證:(一)以「極化態量測角度誤差梯度」預測之誤差與實驗值之間的相關係數高達0.935。(二)最佳化DRFP極化量測儀在不同待測極化態、不同雜訊強度之下均可較典型的極化量測儀量有較低的量測角度誤差。


    Abstract...................................................2 摘要.......................................................3 誌謝.......................................................4 目錄.......................................................5 圖目錄......................................................7 表目錄......................................................9 第一章 序言................................................10 第二章 理論................................................12 2.1 瓊斯向量、瓊斯矩陣、與龐加萊球.............................12 2.2 DRFP極化量測儀.........................................15 2.3系統雜訊所造成的量測誤差...................................19 2.4最佳化DRFP極化量測儀......................................24 2.4.1 以蒙地卡羅(Monte Carlo)演算法找尋最佳投影極化態組合........24 2.4.2 以1/4波片和半波片擷取最佳投影極化態組合之能量分量...........28 2.4.3 以最佳投影極化態組合之能量分量決定待測光極化態..............32 第三章 實驗結果與討論........................................39 3.1 實驗架構...............................................39 3.2 如何求得並使用校正矩陣修正量測之角度誤差.....................40 3.3 極化量測儀中光學元件之校正................................45 3.3-1 線性極化片之校正.......................................45 3.3-2 四分之一波片之校正.....................................46 3.3-3 半波片之校正..........................................50 3.4 兩種不同量測方式之極化態量測結果............................53 3.4-1 以量測角度誤差梯度及雜訊向量分析量測角度誤差................53 3.4-2 角度誤差預測值與實驗平均值之相關係數......................55 3.4-3 以不同量測法於相同訊雜比下之量測結果......................59 第四章 結論與未來展望........................................67 參考文獻...................................................69  

    [1] R. A. Chipman, and M. Bass, “Handbook of Optics, Volume 2, 2nd edition”, Chapter 22, McGraw-Hill, New York (1995).
    [2] Z. Sekera, “Light Scattering in the Atmosphere and the Polarization of Sky Light.” J. Opt. Soc. Am., 47, 484-490 (1957).
    [3] H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light.” Appl. Opt., 16, 3200-3205 (1977).
    [4] R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix
    by Fourier analysis of a single detected signal.” Opt. Lett., 2, 148-150 (1978).
    [5] S. L. Blakeney, S. E. Day, and J. N. Stewart, “Determination of unknown input polarisation using a twisted nematic liquid crystal display with fixed components”, Opt. Communication, 214, 1-8 (2002).
    [6] L. Gendre, A. Foulonneau, and L. Bigué, “Imaging linear polarimetry using a single ferroelectric liquid crystal modulator”, Appl. Opt., 49, 4687-4699 (2010).
    [7] L. Gendre, A. Foulonneau, and L. Bigué, “Full Stokes polarimetric imaging using a single ferroelectric liquid crystal device”, Opt. Eng., 50, 081209-1-7 (2011).
    [8] R. A. Chipman and M. Bass, “Handbook of Optics, Volume 2, 2nd edition”, Chapter 27, McGraw-Hill, New York (1995).
    [9] H. G. Tompkins and E. A. Irene, “Handbook of Ellipsometry”, William Andrew, Inc. (2005).
    [10] J. Shamir and A. Klein, “Ellipsometry with Rotating Plane-polarized Light”, Appl. Opt., 25, 1476-1480 (1986).
    [11] J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers”, Appl. Opt. 38, 3157-3165 (1999).  
    [12] A. Sadjadi and S. L. Chun, “Remote sensing using passive infrared Stokes
    parameters”, Opt. Eng. 43, 2283-2291 (2004).
    [13] A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry”, Opt. Eng., 38, 1402-1408 (1999).
    [14] J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers”, PNAS, 97, 4541-4550 (2000).
    [15] D. L. Peterson Jr., B. C. Ward, K. B. Rochford, P. J. Leo and G. Simer, “Polarization mode dispersion compensator field trial and field fiber characterization”, Opt. Express, 10, 614-621 (2002).
    [16] S. X. Wang and A. M. Weiner, “A Complete Spectral Polarimeter Design for
    Lightwave Communication Systems”, Journal of Lightwave Technology, 24, 3982-3991 (2006).
    [17] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics, 2nd edition”, Wiley.
    [18] S. X. Wang and A. M. Weiner, “Fast wavelength-parallel polarimeterfor broadband optical networks”, Opt. Lett., 29, 923-925 (2004).
    [19]【高等工程數學】,何海、何峰著,鼎茂圖書出版股份有限公司。
    [20]http://www.sjsu.edu/faculty/gerstman/StatPrimer/correlation.pdf.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE