簡易檢索 / 詳目顯示

研究生: 陳文偉
Wen-Wey Chen
論文名稱: 使用電壓調整機制及整合儲存電容完成之高動態範圍影像感測器
A Wide Dynamic Range Image Sensor Using a Voltage Adjustment Mechanism with Integration Capacitor
指導教授: 徐永珍教授
Prof. Klaus Yung-Jane Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 產業研發碩士積體電路設計專班
Industrial Technology R&D Master Program on IC Design
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 62
中文關鍵詞: 高動態範圍影像感測器互補式金氧半導體影像感測器相關二次取樣電路
外文關鍵詞: Wide Dynamic Range CMOS Image Sensor, CMOS Imager, Correlation Double Sampling Circuit
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要使用閘極電壓調節機制於主動式像素感測器(APS)之傳輸電晶體(Transfer Transistor),目的為增加互補式金氧半影像感測器(CMOS Image Sensor)的動態範圍(Dynamic Range),並利用一實際電容值掛於APS(4T架構)中重置電晶體(Reset Transistor)的汲極(Drain)端,以增加互補式金氧半影像感測器之動態範圍,而此電路主要是使用4T架構加實際電容增加動態範圍(dynamic range)展現,再連接一組相關性雙取樣電路(CDS),利用時脈控制,使其兩個電容分別儲存訊號加雜訊及儲存雜訊訊號,並透過第二級將兩電壓值相減,以降低固定式雜訊(FPN)。而本製程透過國家晶片中心以TSMC 0.35μm 2P4M CMOS標準製程來完成,並構想以16:10螢幕尺寸來設計感光陣列大小,取代現今4:3感光陣列必須再行基底轉換為16:10的營幕大小,故此為一優點。而影像感測器電路架構部份,(1)光偵測器(Photo-detector)本論文使用CMOS 0.35μm製程支援之BJT_PNP5,完成以P+/Nwell/Psub為PN接面材料之光偵測器。(2)使用主動畫素感測器(Active Pixel Sensor;4T架構)及晶片內實際電容,以PMOS閘極電壓調整機制控制傳輸電晶體,調整在高照度下其儲存電荷流速趨緩,達到動態範圍提升。(3)相關二次取樣(Correlation Double Sampling)電路,使用取樣電容儲存訊號與雜訊,並透過第二級負載相減取得曝光時間轉換所成之光電壓訊號。(4)使用常數轉導偏壓(Constant Gm Bias)電路提供一個與電源供應電壓無關之偏壓,最後以一穩定光源照射感光區域(其餘電路部份以Metal4遮蔽以避免遭到熱破壞)及FPGA燒錄所需之時脈控制完成整體電路之操作,最後以高解析度數位電表或示波器得量測得到動態範圍的延伸。


    This work proposes a MOSFET gate voltage adjustment mechanism with a real capacitance in 4T active pixel sensor structure to increase the dynamic range of CMOS image sensor. This 4T APS structure also combines with correlation double sampling (CDS) circuit in order to reduce fixed pattern noise. This chip utilizing a 16:10 monitor size to replace traditional 4:3 sensor array is designed by using a TSMC 0.35μm 2P4M CMOS technology therefore there will be an advantage that we don’t need to use complex base transformation between sensor and monitor. For sensor structure, (1)We use P+/Nwell/Psub material in CMOS 0.35um process to implement photo-detector. (2)An active pixel sensor is realized with 4T structure and an integration capacitor to extend dynamic range. (3) Including correlation double sampling circuit to get the signal which is more accurate and without noise. (4)Constant Gm bias is obtained to provide a power independent current. Finally, we use FPGA to implement timing control and a stable light source to illuminate sensor area to accomplish the experimental environment. Then results are measurement from digital meter or oscilloscope. From quantizing the measurement results, the dynamic range is extended as what we expect.

    第一章 序論...........................................1 1.1 研究動機..........................................1 1.2 發展現況及規格簡介................................2 1.3 論文架構..........................................6 第二章 影像處理流程及CMOS Imager與CCD之比較...........7 2.1 了解人類可見光譜..................................7 2.2 探討靜態影像處理流程..............................8 2.3 CMOS Image Sensor的包裝技術......................10 2.4 CMOS Image Sensor與CCD之比較.....................12 第三章 光電元件理論與高動態範圍轉換電路之研究........15 3.1 電子-光子-聲子的交互作用.........................15 3.2 PN接面之應用及探討BJT內部寄生效應................17 3.3 高動態範圍影像轉換電路之研究.....................20 3.3.1 對數型主動式影像感測電路....................20 3.3.2 回授電荷補充機制............................22 3.3.3 使用時脈控制之電荷補充機制..................25 第四章 高動態範圍影像感測器原理分析與設計模擬........28 4.1 閘極電壓調整機制及主動畫素感測器架構.............28 4.2 影像感測器架構選擇...............................30 4.2.1 CMOS影像感測器電路架構......................30 4.2.2 高動態影像感測器設計原理與步驟..............31 4.2.3 Constant GM 偏壓電路........................34 4.2.4 設計流程 ................................36 4.3 高動態範圍影像感測器使用理想差動放大器模擬輸出...38 4.4 高動態範圍影像感測器輸出使用示波器模擬阻抗匹配...42 4.5 整體高動態範圍影像感測器電路.....................45 4.6 模擬結果及Layout配置.............................51 第五章 量測結果與後續建議............................54 5.1 量測環境介紹及結果討論...........................54 5.2 論文後續研究建議.................................60 5.3 結論 60 參考文獻..............................................61

    [1] Yavuz Degerli, Francis Lavernhe, Pierre, Tean A.Farre, “Analysis and Reduction of Signal Readout Circuitry Temporal Noise in CMOS Image Sensor for low- Light Level,” IEEE Trans. Electron Devices, vol.47, no.5, pp. 949-962, May 2000.
    [2] Yu-Chuan Shih, Chung-Yu Wu, “A New CMOS Pixel Structure for Low- Dark-Current and Large-Array-Size Still Image Applications,” IEEE Trans. Circuits and System-I: Regular Papers, vol.51, no.11, pp.2204-2214, Nov. 2004.
    [3] Kazuya Yonemoto and Hirofumi Sumi,“A Numerical of a CMOS Image Sensor With a Simple Fixed-Pattern-Noise-Reduction Technology”IEEE Trans. Electron Devices, vol.49, no.5, pp. 746-753, May 2002.
    [4] Hsiu-Yu Cheng and Ta-Chin King,“A CMOS Image Sensor With Dark-Current Cancellation and Dynamic Sensitivity Operations” IEEE Trans. Electron Devices,vol.50,no.1, pp. 91-95, January 2003.
    [5] 2007 Micron Technology (http://www.micron.com/)
    [6] Behzad Razavi, “Noise” in Design of Analog CMOS Integrated Circuits,” New York:McGraw-Hill, pp.215-218, pp.377-381,pp.410-423,Intenationl Edition 2001.
    [7] Shigetoshi Sugawa, Nana Akahane,Satoru Adachi,Kazuya Mori,Toshiyuki Ishiuchi, Koichi Mizobuchi “A 100dB Dynamic Range CMOS Image Sensor Using a Lateral Overflow Integration Capacitor,” IEEE I.Solid-State Circuit Conference, session 19,images,19.4, pp. 352-353, pp. 603, Feb. 2005.
    [8] Nana Akahane, Shigetoshi Sugawa, Satoru Adachi, Kazuya Mori, Toshiyuki Ishiuchi,Koichi Mizobuchi, “A sensitivity and Linearity Improvement of a 100dB Dynamic Range CMOS Image Sensor Using a Lateral Overflow Integration Capacitor,” Symp. VLSI Circuits Digest of Technology Papers, pp. 62-65, 2005.
    [9] Masaaki Sasaki,Mitsuhito Mase,Shoji Kawahito,Yoshiaki Tadokoro,“A Wide Dynamic Range CMOS Image Sensor with Multiple Short-Time Exposures,”Proceedings of 2004 IEEE Work Shop on Advanced Image Sensors, pp. 967-972, 2004.
    [10] Abbas El Gamal and Helmy Eltoukhy,“CMOS Image Sensor, “IEEE Circuits and Devices Magazine ,” pp. 6-20, May/June 2005.
    [11] 林育如、江瑞璋,“光讓顏色一不一樣,條件等色”Jul 10, 2001 (http://www.brainnew.com.tw/article/raymond2001/ra_071001.asp)
    [12] Technical Advisory Services for Image (www.tasi.ac.uk)
    [13] 天碩科技(http://www.rayopt.com/welcome.htm)
    [14] Mr.OH!數位講座之數位相機的缺陷:摩爾紋紫邊效應及紫邊效應
    (http://www.digital.idv.tw/)
    [15] Willkommen bei www.ccd-sensor.de!
    [16] 2006 Micron Technology (http://www.micron.com/)
    [17] E.Fred Schubert, “Radiative and non-Radiative Recobination,” in Light- Emitting -Diodes, Cambridge University Press: New York, pp.27-33, 2006
    [18] Wei-Jean Liu, Hsiu-Fen Yeh, Oscal T.-C. Chen,“A High Dynamic-Range CMOS Image Sensor with Locally Adjusting Charge Supply Mechanism,” Circuits and Systems, 2005. 48th Midwest Symposium on, pp. 384-387, 2005.
    [19] Liang-Wei Lai, Cheng-Hsiao Lai, and Ya-Chin King“A Novel Logarithmic Response CMOS Image Sensor With High Output Voltage Swing and In-Pixel Fixed-Pattern Noise Reduction”IEEE Sensor Journal, Vol. 4, No.1, p.p 122-126,
    February 2004.
    [20] CIC國家晶片中心(http://www.cic.org.tw/cic_v13/main.jsp)
    [21] Zhi-yao Wu, Klaus Yung-Jane Hsu , “A Image Sensor with Automatic Gain Control Mechanism,” NTHU, p.p22-24, February 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE