研究生: |
韋婕亞 Jaya Vatsyayan |
---|---|
論文名稱: |
尿嘧啶雙磷酸葡萄糖去氫酶基因驅動子之分析與調控 Transcriptional Regulation of Human Gene Encoding UDP-Glucose Dehydrogenase |
指導教授: |
張晃猷
Hwan-You Chang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 112 |
中文關鍵詞: | UGDH 、promoter analysis 、Sp1 、PPRE 、Transcriptional regulation 、Xenobiotics |
外文關鍵詞: | UGDH, promoter analysis, Sp1, PPRE, Transcriptional regulation, Xenobiotics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
尿嘧啶雙磷酸葡萄糖去氫酶(UDP-Glc Dehydrogeneas, UGDH) 是生物體唯一催化尿嘧啶二磷酸葡萄糖(UDPGlc)氧化反應變成尿嘧啶雙磷酸葡萄糖醛酸(UDPGlcA)的酵素。尿嘧啶雙磷酸葡萄糖醛酸扮演很多重要的生理角色,在肝臟中可經由第二階段藥物解毒酶作用,結合眾多外生性及內生性物質,增加它們的可溶性以便於後續分泌排出。另外,尿嘧啶雙磷酸葡萄糖醛酸提供醣胺多醣體,玻尿酸,軟骨素硫酸及硫酸肝素的重要成分。
我們分析人類表現序列標記,如同5’RACE實驗結果,證明之前利用北方墨點法的發現,此基因有二個轉錄起始點,相隔約160核苷酸。利用生物資訊軟體分析UGDH5’端附近區域的基因序列,預測出許多有轉錄因子結合的位置。相當獨特的是,有14個可能的Sp1結合位在調控子前面632核苷酸的片段,除此還有一個非典型的TATA區塊的存在。為了探討在UGDH調控子區域對基因表現的調控,尤其是較長的mRNA,我們在2.1kbUGDH調控子區域建立序列性刪除片段及利用螢火蟲冷光報告基因分析不同驅動子區域的調控活性。我們的結果顯示,從-486到-632核甘酸位置可能與此基因的正調節有關。我們也發現SP1轉錄因子的抑制物MithramycinA,可以降低此基因驅動子的活性,說明SP1很可能參與UGDH的基因表現調控。我們在這個區域利用定點突變分析了3個可能與Sp1結合片段的功能。在-564位置的突變,在HepG2 及HeLa細胞實驗中,證實此區域是提供UGDH基因表現增強的片段。另外,經由核酸帶遲滯電泳移動分析以及抗Sp1抗體的超移動分析,證實此GC區塊的確是Sp1的結合單元。總結而言,我們的結果確認一個選擇性的UGDH轉錄起始位置,以及找到了可提高加強UGDH基因基本轉錄活性的cis-element。
我們除了定出在UGDH基因5’端附近714核苷酸為此基因的主要的調控子外,也進行分析UGDH 調控子前面1057-957區域與抑制基因表現有關的區域。突變位在-1003包含於被預測為過氧化酶體接受器的反應片段(PPRE)的核甘酸,可破壞此區域的抑制功能。我們也利用親合性管柱層析搜尋可與此段類似PPRE抑制單元交互作用的蛋白質。利用生物素標定此區域的DNA與細胞核萃取物混合後,經由帶有 streptavidin的顆粒進行純化,找到兩個蛋白質。 隨後經MALDI-TOF確認純化之蛋白為一62 kDa的鋅拇指蛋白及42kDa 的肌動蛋白。
另外,由於外生性物質是否可以調控UGDH基因表現仍不清楚,因此我們也嘗試回答這個問題。用藥物處理肝癌細胞HepG2後,利用同步定量PCR方法分析UGDH基因的表現,以及調控子報告基因的分析,我們發現1.23 kb的UGDH驅動子會受到抗生素rifampicin的活化。而-632至-1050的片段是受 rifampicin影響所作用的位置。我們進一步將PPAR及RXR表現載體一同送入細胞之後,再處理PPAR活化物,發現不論是否加入rifampicin, UGDH驅動子的活性,都會受到明顯的抑制。總結而言,我們的研究,第一次說明UGDH基因會受到外生性物質的調節,同時也找出受到rifampicin調控的UGDH基因驅動子單元。
The prominence of UDP-Glc Dehydrogenase (UGDH, EC1.1.1.22) is in its unique and pivotal role in catalyzing the oxidation of UDP-Glc to UDP-GlcA accompanied with the reduction of two molecules of NAD. UDP-GlcA plays many important physiological roles in liver by conjugating with a variety of xeno- and endobiotic compounds to aid in their solubilization and excretion through the action of phase II drug detoxifying enzymes. UDP-GlcA serves as a critical component of the glycosaminoglycans, proteoglycans, hyaluronan, chondroitan sulfate and heparan sulfate.
Analysis of a human EST database, as well as the results of a 5’-RACE experiment revealed the presence of two transcription start sites approximately 160 bp apart in the human UGDH gene confirming previous Northern hybridization results. An extensive bioinformatics analysis of the gene sequence of the UGDH 5’-flanking region revealed many interesting putative transcription factor-binding sites. The most unique fact was the prediction of fourteen putative Sp1 sites upto –632 bp region of the promoter, besides the presence of an atypical TATA box. To delineate the regions in the UGDH promoter required for regulating the expression of the gene, in particular the synthesis of the large transcript, serial deletions of the 2.1-kb UGDH promoter region were constructed and their activities determined by the firefly luciferase reporter gene assay. Our results indicated that the region from nucleotide position –486 to –632 relative to the start of the small transcript contains positive regulatory elements that contribute to gene expression. Mithramycin A, an inhibitor of transcription factor Sp1, abrogated the promoter activity, suggesting the involvement of this specific protein in UGDH expression. By using site-directed mutagenesis, we analyzed the functional contribution of three putative Sp1 binding elements within this region. A mutation at position –564 demonstrated that this site serves as an enhancing element in both HepG2 and HeLa cells. The complex formation pattern revealed by an electrophoretic mobility shift assay as well as an anti-Sp1 antibody-mediated supershift assay confirmed the identity of this GC box as an Sp1 binding motif. Our results thus identified an alternative transcription start site on the UGDH promoter, and located the cis-element that greatly enhances the basal transcriptional activity of UGDH gene.
Besides defining the 714 bp 5’-flanking region of the UGDH gene as the core promoter, in another study, we delineated the region from nucleotide positions –1057 to –957 on the UGDH promoter to be responsible for the repression of the promoter activity. A mutation at nucleotide –1003, which is contained within a motif predicted as the response element for peroxisome proliferator receptor a□ (PPARa), abolished the suppression effect. The proteins interacting with the PPRE-like repressor motif were purified by biotin labeled DNA affinity purification with streptavidin-coated beads. Subsequently MALDI-TOF identified the purified proteins as a 62-kDa zinc finger and a 42-kDa b-actin protein.
In addition, it is not known whether xenobiotics can modulate the UGDH gene expression. An attempt to answer this question was made by treating the human hepatoma cells HepG2 with several medicinal compounds and the UGDH gene expression was analyzed by using Real time-PCR. Through promoter-reporter gene assays, we found that rifampicin showed multiple folds activation of a 1.23-kb UGDH promoter construct, and the region likely to respond to rifampicin treatment is located within the region –632 to –1050. A bioinformatics search for xenobiotic response element in this region predicted a binding motif for the PPAR at position –1003. A mutation at the predicted PPAR recognizing motif eliminated normal suppression as well as the rifampicin activation effect on the UGDH promoter activity. Cotransfection with the PPARa and RXRa expression vectors and subsequent treatment with the PPARa agonist led to the suppression of the UGDH promoter activity either in the presence or absence of rifampicin. Our study for the first time showed the UGDH gene to be under xenobiotic regulation and delineated a motif responsible for rifampicin response and transcriptional repression of the UGDH gene.
1. Franzen, B., Carrubba, C., Feingold, D. S., Ashcom, J. and Franzen, J. S. (1981) Amino acid sequence of the tryptic peptide containing the catalytic-site thiol group of bovine liver uridine diphosphate glucose dehydrogenase. Biochem J 199, 599-602.
2. Dougherty, B. A. and van de Rijn, I. (1993) Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose dehydrogenase activity. J Biol Chem 268, 7118-7124.
3. Petit, C., Rigg, G. P., Pazzani, C., Smith, A., Sieberth, V., Stevens, M., Boulnois, G., Jann, K. and Roberts, I. S. (1995) Region 2 of the Escherichia coli K5 capsule gene cluster encoding proteins for the biosynthesis of the K5 polysaccharide. Mol Microbiol 17, 611-620.
4. Rodriguez, M. L., Jann, B. and Jann, K. (1988) Structure and serological characteristics of the capsular K4 antigen of Escherichia coli O5:K4:H4, a fructose-containing polysaccharide with a chondroitin backbone. Eur J Biochem 177, 117-124.
5. Strominger, D. B. and Friedkin, M. (1954) Enzymatic synthesis of thiouracil riboside and thiouracil desoxyriboside. J Biol Chem 208, 663-668.
6. Zalitis, J. and Feingold, D. S. (1969) Purification and properties of UDPG dehydrogenase from beef liver. Arch Biochem Biophys 132, 457-465.
7. Franzen, J. S., Marchetti, P. S. and Feingold, D. S. (1980) Resonance energy transfer between catalytic sites of bovine liver uridine diphosphoglucose dehydrogenase. Biochemistry 19, 6080-6089.
8. Jaenicke, R., Rudolph, R. and Feingold, D. S. (1986) Dissociation and in vitro reconstitution of bovine liver uridine diphosphoglucose dehydrogenase. The paired subunit nature of the enzyme. Biochemistry 25, 7283-7287.
9. Hempel, J., Perozich, J., Romovacek, H., Hinich, A., Kuo, I. and Feingold, D. S. (1994) UDP-glucose dehydrogenase from bovine liver: primary structure and relationship to other dehydrogenases. Protein Sci 3, 1074-1080.
10. Binari, R. C., Staveley, B. E., Johnson, W. A., Godavarti, R., Sasisekharan, R. and Manoukian, A. S. (1997) Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124, 2623-2632.
11. Haerry, T. E., Heslip, T. R., Marsh, J. L. and O'Connor, M. B. (1997) Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124, 3055-3064.
12. Hacker, U., Lin, X. and Perrimon, N. (1997) The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565-3573.
13. Spicer, A. P., Kaback, L. A., Smith, T. J. and Seldin, M. F. (1998) Molecular cloning and characterization of the human and mouse UDP-glucose dehydrogenase genes. J Biol Chem 273, 25117-124.
14. Peng, H. L., Lou, M. D., Chang, M. L. and Chang, H. Y. (1998) cDNA cloning and expression analysis of the human UDPglucose dehydrogenase. Proc Natl Sci Counc Repub China B 22, 166-172.
15. Bontemps, Y., Maquart, F. X. and Wegrowski, Y. (2000) Human UDP-glucose dehydrogenase gene: complete cloning and transcription start mapping. Biochem Biophys Res Commun 275, 981-985.
16. Marcu, O., Stathakis, D. G. and Marsh, J. L. (1999) Assignment of the UGDH locus encoding UDP-glucose dehydrogenase to human chromosome band 4p15.1 by radiation hybrid mapping. Cytogenet Cell Genet 86, 244-245.
17. Walsh, E. C. and Stainier, D. Y. (2001) UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670-1673.
18. Poulin, R., Baker, D. and Labrie, F. (1988) Androgens inhibit basal and estrogen-induced cell proliferation in the ZR-75-1 human breast cancer cell line. Breast Cancer Res Treat 12, 213-225.
19. Dauvois, S., Geng, C. S., Levesque, C., Merand, Y. and Labrie, F. (1991) Additive inhibitory effects of an androgen and the antiestrogen EM-170 on estradiol-stimulated growth of human ZR-75-1 breast tumors in athymic mice. Cancer Res 51, 3131-3135.
20. Bryan, R. M., Mercer, R. J., Bennett, R. C., Rennie, G. C., Lie, T. H. and Morgan, F. J. (1984) Oestradiol receptor values in breast cancer and response of metastases to therapy. Aust N Z J Surg 54, 3-6.
21. Kimura, N., Mizokami, A.,Oonuma, T.,Sasano, H.andNagura, H. (1993) Immunocytochemical localization of androgen receptor with polyclonal antibody in paraffin-embedded human tissues. J Histochem Cytochem 41, 671-8
22. Lea, O. A., Kvinnsland, S. and Thorsen, T. (1989) Improved measurement of androgen receptors in human breast cancer. Cancer Res 49, 7162-7167.
23. Ormandy, C. J., Hall, R. E., Manning, D. L., Robertson, J. F., Blamey, R. W., Kelly, P. A., Nicholson, R. I. and Sutherland, R. L. (1997) Coexpression and cross-regulation of the prolactin receptor and sex steroid hormone receptors in breast cancer. J Clin Endocrinol Metab 82, 3692-3699.
24. Lapointe, J. and Labrie, C. (1999) Identification and cloning of a novel androgen-responsive gene, uridine diphosphoglucose dehydrogenase, in human breast cancer cells. Endocrinology 140, 4486-4493.
25. Bishayee, A .and Chatterjee, M. (1994) Anticarcinogenic biological response of Mikania cordata: reflections in hepatic biotransformation systems. Cancer Lett 81, 193-200.
26. Sauer, F. and Tjian, R. (1997) Mechanisms of transcriptional activation: differences and similarities between yeast, Drosophila, and man. Curr Opin Genet Dev 7, 176-81
27. Maniatis, T., Goodbourn, S. and Fischer, J. A. (1987) Regulation of inducible and tissue-specific gene expression. Science 236, 1237-1245.
28. Mitchell, P. J. and Tjian, R. (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371-378.
29. Levine, M. and Tjian, R. (2003) Transcription regulation and animal diversity. Nature 424, 147-151.
30. Lania, L., Majello, B. and De Luca, P. (1997) Transcriptional regulation by the Sp family proteins. Int J Biochem Cell Biol 29, 1313-1323.
31. Majello, B., De Luca, P. and Lania, L. (1997) Sp3 is a bifunctional transcription regulator with modular independent activation and repression domains. J Biol Chem 272, 4021-6
32. Bassols, A .and Massague, J. (1988) Transforming growth factor beta regulates the expression and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans. J Biol Chem 263, 3039-3045.
33. Wegrowski, Y., Perreau, C., Bontemps, Y. and Maquart, F. X. (1998) Uridine diphosphoglucose dehydrogenase regulates proteoglycan expression: cDNA cloning and antisense study. Biochem Biophys Res Commun 250, 206-211.
34. Grubb, M. F., Kasofsky, J., Strong, J., Anderson, L. W. and Cysyk, R. L. (1993) Serum stimulation of UDP-glucose dehydrogenase activity in Swiss 3T3 fibroblasts. Biochem Mol Biol Int 30, 819-827.
35. Bontemps, Y., Vuillermoz, B., Antonicelli, F., Perreau, C., Danan, J. L., Maquart, F. X. and Wegrowski, Y. (2003) Specific protein-1 is a universal regulator of UDP-glucose dehydrogenase expression: its positive involvement in transforming growth factor-beta signaling and inhibition in hypoxia. J Biol Chem 278, 21566-21575.
36. McGarry, A. and Gahan, P. B. (1985) A quantitative cytochemical study of UDP-D-glucose: NAD-oxidoreductase (E.C. 1.1.1.22) activity during stelar differentiation in Pisum sativum L. cv Meteor. Histochemistry 83, 551-554.
37. Reen, R. K., Jamwal, D. S., Taneja, S. C., Koul, J. L., Dubey, R. K., Wiebel, F. J. and Singh, J. (1993) Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine. Biochem Pharmacol 46, 229-238.
38. Horio, F., Kimura, M. and Yoshida, A. (1983) Effect of several xenobiotics on the activities of enzymes affecting ascorbic acid synthesis in rats. J Nutr Sci Vitaminol (Tokyo) 29, 233-247.
39. De Luca, G., Speziale, P., Rindi, S., Balduini, C. and Castellani, A. A. (1976) Effect of some nucleotides on the regulation of glycosaminoglycan biosynthesis. Connect Tissue Res 4, 247-254.
40. Rizzotti, M., Cambiaghi, D., Gandolfi, F., Rindi, S., Salvini, R. and De Luca, G. (1986) The effect of extracellular matrix modifications on UDP-glucose dehydrogenase activity in cultured human skin fibroblasts. Basic Appl Histochem 30, 85-92.
41. Arinze, I. J. and Kawai, Y. (2003) Sp family of transcription factors is involved in valproic acid-induced expression of Galphai2. J Biol Chem 278, 17785-17791.
42. Dignam, J. D., Martin, P. L., Shastry, B. S. and Roeder, R. G. (1983) Eukaryotic gene transcription with purified components. Methods Enzymol 101, 582-598.
43. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
44. Luca, G., Rindi, S. and Rizzotti, M. (1981) Exogenous UDP-xylose can inhibit UDP-glucose dehydrogenase activity of cultured human skin fibroblasts. Basic Appl Histochem 25, 67-69.
45. Vatsyayan, J., Peng, H. L. and Chang, H. Y. (2005) Analysis of human UDP-glucose dehydrogenase gene promoter: identification of an Sp1 binding site crucial for the expression of the large transcript. J Biochem 137, 703-709.
46. Maldonado, E., Hampsey, M. and Reinberg, D. (1999) Repression: targeting the heart of the matter. Cell 99, 455-458.
47. Quandt, K., Frech, K., Karas, H., Wingender, E. and Werner, T. (1995) MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 23, 4878-4884.
48. Juge-Aubry, C., Pernin, A., Favez, T., Burger, A. G., Wahli, W., Meier, C. A. and Desvergne, B. (1997) DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5'-flanking region. J Biol Chem 272, 25252-25259.
49. Karsenty, G., Ravazzolo, R. and de Crombrugghe, B. (1991) Purification and functional characterization of a DNA-binding protein that interacts with a negative element in the mouse alpha 1(I) collagen promoter. J Biol Chem 266, 24842-24848.
50. Nordhoff, E., Krogsdam, A. M., Jorgensen, H. F., Kallipolitis, B. H., Clark, B. F., Roepstorff, P. and Kristiansen, K. (1999) Rapid identification of DNA-binding proteins by mass spectrometry. Nat Biotechnol 17, 884-888.
51. Schweppe, R. E., Melton, A. A., Brodsky, K. S., Aveline, L. D., Resing, K. A., Ahn, N. G. and Gutierrez-Hartmann, A. (2003) Purification and mass spectrometric identification of GA-binding protein (GABP) as the functional pituitary Ets factor binding to the basal transcription element of the prolactin promoter. J Biol Chem 278, 16863-16872.
52. Medugno, L., Costanzo, P., Lupo, A., Monti, M., Florio, F., Pucci, P. and Izzo, P. (2003) A novel zinc finger transcriptional repressor, ZNF224, interacts with the negative regulatory element (AldA-NRE) and inhibits gene expression. FEBS Lett 534, 93-100.
53. Witzgall, R., O'Leary, E., Leaf, A., Onaldi, D. and Bonventre, J. V. (1994) The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci U S A 91, 4514-4518.
54. Margolin, J. F., Friedman, J. R., Meyer, W. K., Vissing, H., Thiesen, H. J. and Rauscher, F. J., 3rd. (1994) Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci U S A 91, 4509-4513.
55. Agata, Y., Matsuda, E. and Shimizu, A. (1999) Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1beta/KRIP-1). J Biol Chem 274, 16412-16422.
56. Schultz, D. C., Friedman, J. R. and Rauscher, F. J., 3rd. (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15, 428-443.
57. Kukalev, A., Nord, Y., Palmberg, C., Bergman, T. and Percipalle, P. (2005) Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat Struct Mol Biol 12, 238-44.
58. Mitsuzawa, H., Kimura, M., Kanda, E. and Ishihama, A. (2005) Glyceraldehyde-3-phosphate dehydrogenase and actin associate with RNA polymerase II and interact with its Rpb7 subunit. FEBS Lett 579, 48-52.
59. Percipalle, P., Fomproix, N., Kylberg, K., Miralles, F., Bjorkroth, B., Daneholt, B.and Visa, N. (2003) An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc Natl Acad Sci U S A 100, 6475-6480.
60. Rando, O. J., Zhao, K. and Crabtree, G. R. (2000) Searching for a function for nuclear actin. Trends Cell Biol 10, 92-97.
61. Bettinger, B. T., Gilbert, D. M. and Amberg, D. C. (2004) Actin up in the nucleus. Nat Rev Mol Cell Biol 5, 410-415.
62. Shumaker, D. K., Kuczmarski, E. R. and Goldman, R. D. (2003) The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curr Opin Cell Biol 15, 358-366.
63. Olave, I. A., Reck-Peterson, S. L. and Crabtree, G. R. (2002) Nuclear actin and actin-related proteins in chromatin remodeling. Annu Rev Biochem 71, 755-781.
64. Mizuguchi, G., Shen, X., Landry, J., Wu, W. H., Sen, S. and Wu, C. (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343-348.
65. Yokota, H., Hashimoto, H., Motoya, M. and Yuasa, A. (1988) Enhancement of UDP-glucuronyltransferase, UDP-glucose dehydrogenase, and glutathione S-transferase activities in rat liver by dietary administration of eugenol. Biochem Pharmacol 37, 799-802.
66. Xie, W., Uppal, H., Saini, S. P., Mu, Y., Little, J. M., Radominska-Pandya, A. and Zemaitis, M. A. (2004) Orphan nuclear receptor-mediated xenobiotic regulation in drug metabolism. Drug Discov Today 9, 442-449.
67. Issemann, I. and Green, S. (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645-650.
68. Rosen, E. D. and Spiegelman, B. M. (2001) PPARgamma : a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 276, 37731-37734.
69. Barbier, O., Torra, I. P., Sirvent, A., Claudel, T., Blanquart, C., Duran-Sandoval, D., Kuipers, F., Kosykh, V., Fruchart, J. C. and Staels, B. (2003) FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 124, 1926-1940.
70. Barbier, O., Villeneuve, L., Bocher, V., Fontaine, C., Torra, I. P., Duhem, C., Kosykh, V., Fruchart, J. C., Guillemette, C. and Staels, B. (2003) The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene. J Biol Chem 278, 13975-13983.
71. Black, M. (1984) Acetaminophen hepatotoxicity. Annu Rev Med 35, 577-93.
72. Bessems, J. G. and Vermeulen, N. P. (2001) Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31, 55-138.
73. Kim, H. and Schuetz, A. W. (1993) Structural and functional differentiation of follicular and oviductal mouse oocytes visualised with FITC-protein conjugates. Zygote 1, 297-307.
74. Michalets, E. L. (1998) Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 18, 84-112.
75. Kocarek, T. A., Schuetz, E. G., Strom, S. C., Fisher, R. A. and Guzelian, P. S. (1995) Comparative analysis of cytochrome P4503A induction in primary cultures of rat, rabbit, and human hepatocytes. Drug Metab Dispos 23, 415-421.
76. Lehmann, J. M., McKee, D. D., Watson, M. A., Willson, T. M., Moore, J. T. and Kliewer, S. A. (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102, 1016-1023.
77. Goodwin, B., Hodgson, E. and Liddle, C. (1999) The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol 56, 1329-1339.
78. Goodwin, B., Moore, L. B., Stoltz, C. M., McKee, D. D. and Kliewer, S. A. (2001) Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol Pharmacol 60, 427-431.
79. Gbaguidi, G. F. and Agellon, L. B. (2004) The inhibition of the human cholesterol 7alpha-hydroxylase gene (CYP7A1) promoter by fibrates in cultured cells is mediated via the liver x receptor alpha and peroxisome proliferator-activated receptor alpha heterodimer. Nucleic Acids Res 32, 1113-1121.
LIST OF PUBLICATIONS
1. Vatsyayan J, Peng HL, Chang HY. 2005 Analysis of human UDP-glucose dehydrogenase gene promoter: identification of an Sp1 binding site crucial for the expression of the large transcript. Journal of Biochemistry. 137(6):703-9
2. Vatsyayan J, Lee SJ, Chang HY. 2005 Effects of xenobiotics and peroxisome proliferator receptor- alpha on the human UDPglucose dehydrogenase gene expression. Journal of Biochemical and Molecular Toxicology (accepted).
3. Vatsyayan J, Lin CT, Peng HL, Chang HY. 2005 Identification of a cis-acting element responsible for negative regulation of the human UDP-glucose dehydrogenase gene expression. Bioscience, Biotechnology, and Biochemistry (revised).