簡易檢索 / 詳目顯示

研究生: 陳智揚
Chen, Chih-Yang
論文名稱: 飛秒摻鉺光纖放大器
Femtosecond erbium-doped fiber amplifier
指導教授: 楊尚達
Yang, Shang-Da
口試委員: 項維巍
Hsiang, Wei-Wei
李建中
Lee, Chien-Chung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 39
中文關鍵詞: 超快光學光纖放大器非線性光學
外文關鍵詞: Fiber amplifier
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們利用一個脈衝塑型器來控制脈衝的頻譜相位並送入一台商用摻鉺光纖放大器進行脈衝放大,並藉此希望找尋最大的尖峰功率以及最短的脈衝寬度。理論上,當脈衝被強烈延展時,在放大過程中,非線性效應的影響將會被衰減,然而,因為我們所使用的摻鉺光纖放大器是由一條40公尺的摻鉺光纖所構成,因此非線性效應在我們的實驗中仍扮演一個相當重要的腳色,使得頻譜有強烈的拓展。在我們的實驗中,我們使用功率7.7 毫瓦、重複率8.3 兆赫、轉換極限頻寬660 飛秒的脈衝來送入我們的摻鉺光纖放大器系統進行放大,當脈衝塑型器賦予3.285 ps2的群速色散時,我們得到平均功率155 毫瓦、理想最高尖峰功率235 千瓦的放大脈衝。


    In this thesis, we utilize a pulse shaper to control the spectral phase of the pulse seeded to a commercial Erbium-Doped Fiber Amplifier (EDFA) system, and seek to maximize the peak power and minimize the duration of the output pulse. In theory, nonlinear effects can be suppressed when the pulse remains highly chirped during the amplification process. However, in our experiment the EDFA is composed of relatively long EDF [40 meters] compare to typical fiber amplifiers [roughly 3-5 meters], nonlinear effects still play important roles as noticeable spectral broadening is observed. In our work, an input pulse with 7.7 mW average power, 8.3 MHz repetition rate and 660 fs transform-limited (TL) pulse width [defined by full-width at half maximum (FWHM)] is seeded to our EDFA system [with 1.5 W pump power]. Amplified pulses with average power of 155 mW [before compression] and peak power of 235 kW [after ideal phase compensation] is generated when a group delay dispersion (GDD) of 3.285 ps2 is applied to the seed pulse via a pulse shaper.

    摘要 i ABSTRACT ii 致謝 iii TABLE OF CONTENTS OF PICTURES v TABLE OF CONTENTS OF TABLES viii CHAPTER 1 INTRODUCATION 1 CHAPTER 2 THEORY 3 2.1 Nonlinear Effects in Optical Fiber 3 2.1.1 Self-Phase Modulation (SPM) 3 2.1.2 Cross-Phase Modulation (XPM) 7 2.1.3 Numerical Simulation Method 10 2.1.4 Raman Effect 14 2.2 Pulse Behaviors in Optical Fiber Amplifiers 19 2.2.1 Self-Similar Amplification 19 2.2.2 Amplifier-Similariton Laser 21 CHAPTER 3 EXPERIMENTS 22 3.1 Experimental Setup 22 3.2 Experimental Results 25 3.2.1 Impact of Spectral Phase Modulation of Seed Pulse 25 3.2.2 Coherence of Amplified Pulse 27 3.2.3 Pulse Compression and Theoretical Calculation 29 CHAPTER 4 CONCLUSIONS 35 REFERENCES 37

    [1] H. Kawagoe et al., “Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography.,” Biomed. Opt. Express 5, 932 (2014).
    [2] M. Malinauskas et al., “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, 16133 (2016).
    [3] N. G. Horton et al., “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205 (2013).
    [4] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
    [5] M. E. Fermann, V. I.Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84, 6010 (2000).
    [6] W. Liu et al., “Pre-chirp managed nonlinear amplification in fibers delivering 100  W, 60  fs pulses,” Opt. Lett. 40, 151 (2015).
    [7] R. W. Boyd, Nonlinear optics. Academic Press, 2008.
    [8] G. P. Agrawal, Nonlinear fiber optics. Academic Press, 2013.
    [9] A. M.Weiner, Ultrafast optics. Wiley, 2009.
    [10] T. Schneider, Nonlinear Optics in Telecommunications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
    [11] G. I. Stegeman and R. A. Stegeman, Nonlinear optics : phenomena, materials, and devices. Wiley, 2012.
    [12] “Encyclopedia of Laser Physics and Technology - dispersive wave.” .
    [13] N. Bloembergen, “The Stimulated Raman Effect,” Am. J. Phys. 35, 989 (1967).
    [14] J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662 (1986).
    [15] M. J.Wojcik, “Medium-frequency Raman spectra of crystalline uracil, thymine and their 1-methyl derivatives,” J. Mol. Struct. 219 305 (1990).
    [16] A. A. Baganich, V. I. Mikla, D. G. Semak, A. P. Sokolov, and A. P. Shebanin, “Raman Scattering in Amorphous Selenium Molecular Structure and Photoinduced Crystallization,” Phys. status solidi 166, 297 (1991).
    [17] G.-L. Lan, P. K. Banerjee, and S. S. Mitra, “Raman scattering in optical fibers,” J. Raman Spectrosc. 11, 416 (1981).
    [18] R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1973).
    [19] R. H. Stolen and M. A. Bösch, “Low-Frequency and Low-Temperature Raman Scattering in Silica Fibers,” Phys. Rev. Lett. 48, 805 (1982).
    [20] T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett., 29, 498 (2004).
    [21] V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25,1753 (2000).
    [22] V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19, 461 (2002).
    [23] B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4, 307 (2010).
    [24] K.Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser” Opt. Lett.18,1080 (1993).
    [25] F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [26] F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58 (2008).
    [27] H.-W. Chen, C.-L. Tsai, L.-F. Yang, M.-H. Lin, K.-C. Chu, and S.-D.Yang, “Erbium Fiber Oscillator With an Intracavity Pulse Shaper for High-Energy Low-Pedestal Wavelength-Tunable Femtosecond Pulse Generation,” J. Light. Technol. 32, 3277 (2014).
    [28] M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557 (2013).

    QR CODE