簡易檢索 / 詳目顯示

研究生: 莊承翰
Chuang, Cheng-Han
論文名稱: 胺類處理之二氧化矽或碳氣凝膠於二氧化碳捕捉之應用
Amine-treated Silica or Carbon Aerogels for Applications on Carbon Dioxide Capture
指導教授: 呂世源
Lu, Shih-Yuan
口試委員: 胡啟章
裘性天
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 114
中文關鍵詞: 氣凝膠二氧化碳捕捉胺類處理改質浸漬
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全世界消耗大量的化石能源,提供工業生產或交通所需的動力來源,使得大氣中二氧化碳濃度大幅增加,因而造成全球暖化效應。為了減緩溫室效應的惡化,最主要的課題即是減少二氧化碳的排放量。目前,最常見的減碳方法是利用捕捉劑將二氧化碳捕捉下來並與其他氣體分離,減少其排放到大氣的量。
    捕捉劑的種類有很多,最常見也最實用的是固體吸附材,因為分離過程簡單也不需要消耗太多能量。目前有很多研究是著重在利用介面活性劑和模板(template)合成的矽材,如SBA-15、MCM-41等等,這些材料的共同優勢是具有很高的比表面積,因此經過胺類處理以後便可以製備成二氧化碳吸附材。
    本實驗室之前成功以溶膠-凝膠法(sol-gel)合成出高比表面積和孔洞體積的二氧化矽氣凝膠(silica aerogel),其比表面積可高達1,051 m2/g左右。就我們所知,高比表面積的矽材中似乎還沒看到二氧化矽氣凝膠被報導過,因此我們以此為基材,經過胺類浸漬或是改質的處理,變成一種可再利用式的固體二氧化碳捕捉材。從以前實驗到現在的經驗,我們發現胺類浸漬過後的二氧化矽氣凝膠,其二氧化碳捕捉效率非常不理想,但若是經過胺類改質的二氧化矽氣凝膠,效率提升了不少,也因此二氧化矽氣凝膠後來的研究便著重在胺類改質的部分。我們考量到未來此類型的吸附材可能會應用在非純二氧化碳的環境下,因此檢測的時候我們設定吸附材樣品在二氧化碳佔了和氮氣混合的氣體5%(v/v)的環境下測定其二氧化碳的捕捉效率。在此條件下,我們所合出之無水改質的樣品,在25℃下二氧化碳的吸附量最高可達64 mg-CO2/g-sorbent左右,而有水改質的樣品在25℃下二氧化碳的吸附量最高可達61.6 mg-CO2/g-sorbent左右。另外,我們發現此材料吸附二氧化碳的速率很快,而且在吸脫附循環的穩定度表現也很可觀,甚至到了6次循環以後材料對二氧化碳的吸附量依舊沒有明顯的減少,換句話說,在混合氣體環境下,此材料在二氧化碳捕捉方面很具有優勢。
    同時,我們也發現有許多文獻積極在研究以碳為基材的二氧化碳吸附材,如奈米碳管,這些碳材的共同特性為具有高比表面積的孔洞材料。就目前我們所知,似乎還沒有有關碳氣凝膠應用在二氧化碳捕捉的文獻被報導過,有鑑於此,我們嘗試利用高比表面積的碳氣凝膠作為基材,進行胺類浸漬或改質的處理使之成為二氧化碳捕捉材。但我們也發現此類材料在混合氣體環境時,二氧化碳的吸附量並不理想,這也意味著若將此吸附材應用在混合氣體下,對二氧化碳選擇性的問題可能會成為不可忽略的隱憂。


    Currently, with a large amount of fossil fuel consumption throughout the world, most of which are required for industry and transportation, the carbon dioxide (CO2) concentration of the atmosphere has been increasing to harmful levels, resulting in devastating global warming. Thus, the key to mitigating the acceleration of global warming is to reduce CO2 emission to atmosphere. Currently, the most common way to decrease the emission of CO2 is using adsorbents to capture CO2, thus separating it from other gases.
    Owing to the simple separation process that costs moderate energy, solid adsorbents are the most practical choice among a variety of adsorbents. Many current researches focus on silica materials, synthesized with surfactant and template such as SBA-15, MCM-41, etc., which possess high specific surface areas as their common advantage. These materials can serve as effective CO2 adsorbents after amine treatment.
    In our lab, we have successfully synthesized silica aerogels through sol-gel methods, featuring high specific surface areas and large pore volumes. To the best of our knowledge, research efforts have not yet been made on the utilization of silica aerogels for CO2 capture. Hence, we use silica aerogels as the basic material and transform it into a recyclable solid CO2 adsorbent through either amine-impregnation or amine-modification process. From our results, amine-impregnated silica aerogels were ineffective in CO2-capture, but the CO2 capture efficiency improved significantly for amine-modified silica aerogels. Hence, we focus on the amine-modification process for silica aerogels in our work, with the understanding that the possible application of this material is in an environment of gas mixtures. Therefore, in measuring the CO2 capacity, we set the environment as 5% CO2 (v/v). The highest CO2 capacity obtained was 64 mg-CO2/g-sorbent at 25℃ for none-water-treated samples and 61.6 mg-CO2/g-sorbent at 25℃ for water treated samples. Besides, we observed that this material showed a high rate of CO2 capture and a great stability in the adsorption-desorption cycle manifested with an excellent CO2 capacity even at the 6th cycle. In other words, this material has a great potential for CO2 capture.
    Meanwhile, many researches on CO2 adsorbents focus on carbon-based materials such as carbon nano-tubes, which are known for their high specific surface areas. We also tried to turn carbon aerogels with high specific surface areas into CO2 adsorbents with the amine-impregnation or amine-modification process. However, the CO2 capacity of this type of adsorbent becomes worse in gas mixture environments. It is essential to improve the CO2 selectivity of this adsorbent so that it may prove suitable for applications in gas mixture environments.

    第1章 緒論 13 1-1 前言 13 1-2 二氧化碳捕獲的簡介 14 1-3 二氧化碳的捕獲技術 16 1-4 二氧化碳的封存方式 20 1-5 二氧化碳的應用 23 第2章 文獻回顧 24 2-1 以溶膠-凝膠法製備氣凝膠材料 24 2-1.1 氣凝膠的簡介與歷史 24 2-1.2 氣凝膠的製備方式 25 2-1.3 氣凝膠的乾燥方式-超臨界乾燥 28 2-1.4 高溫下熟化對二氧化矽氣凝膠特性的影響 30 2-2 利用胺類處理多孔隙材料製備二氧化碳吸附材 33 2-2.1 吸附材捕捉二氧化碳的機制 33 2-2.2 不同胺類處理多孔隙SBA-15矽材以製備二氧化碳捕捉材的方法 34 2-2.3 利用胺類浸漬多孔隙SBA-15矽材以製備二氧化碳捕捉材之研究 35 2-2.4 利用胺類改質擴孔MCM-41矽材以製備二氧化碳捕捉材之研究 40 2-2.5 水分子對胺類改質於多孔矽材的分佈影響 45 2-2.6 以碳作基材製備二氧化碳捕捉材之研究 48 2-3 不同吸附氣體的性質差異 51 第3章 研究內容 52 3-1 實驗動機 52 3-2 實驗藥品 54 3-3 實驗器材 56 3-4 分析儀器 57 3-5 實驗方法 58 3-5.1 利用溶膠-凝膠法製備多孔性二氧化矽氣凝膠 58 3-5.2 利用溶膠-凝膠法製備碳氣凝膠 59 3-5.3 二氧化碳捕捉材製備-胺類浸漬法 60 3-5.4 二氧化碳捕捉材製備-胺類表面改質法 60 3-5.5 不同胺類的批次改質法 61 3-6 儀器檢測方法 63 3-6.1 比表面積和孔洞數值分析 63 3-6.2 材料表面官能基的分析 63 3-6.3 胺類官能基含量的分析 64 3-6.4 雷射共軛焦顯微鏡的檢測 64 3-6.5 二氧化碳捕捉量的檢測 65 3-6.6 二氧化碳捕捉材循環吸脫附穩定度的檢測 66 第4章 結果與討論 67 4-1 二氧化矽氣凝膠和碳氣凝膠的特性分析 67 4-1.1 比表面積和孔洞體積的分析 67 4-1.2 紅外線光譜分析 72 4-1.3 氮氣吸附量的檢測 73 4-2 二氧化碳捕捉材的特性分析-胺類改質之二氧化矽氣凝膠 75 4-2.1 比表面積和孔洞體積的分析 75 4-2.1(a) TRI無水改質之二氧化矽氣凝膠 75 4-2.1(b) TRI加水改質之二氧化矽氣凝膠 76 4-2.1(c) TRI加水改質之二氧化矽氣凝膠-改變水的添加量 77 4-2.1(d) TRI加水改質之二氧化矽氣凝膠-改變回流溫度 78 4-2.1(e) TRI和APTMS加水雙重改質之二氧化矽氣凝膠 79 4-2.2 氨官能基含量的分析 80 4-2.2(a) TRI無水改質之二氧化矽氣凝膠 80 4-2.2(b) TRI加水改質之二氧化矽氣凝膠 82 4-2.2(c) TRI加水改質之二氧化矽氣凝膠-改變水的添加量 84 4-2.2(d) TRI加水改質之二氧化矽氣凝膠-改變回流溫度 84 4-2.2(e) TRI和APTMS加水雙重改質之二氧化矽氣凝膠 84 4-2.3 雷射共軛焦顯微鏡的分析 86 4-2.3(a) TRI無水改質之二氧化矽氣凝膠 86 4-2.3(b) TRI加水改質之二氧化矽氣凝膠 88 4-2.4 二氧化碳捕捉量的分析 90 4-2.4(a) TRI無水改質之二氧化矽氣凝膠 90 4-2.4(b) TRI加水改質之二氧化矽氣凝膠 92 4-2.4(c) TRI加水改質之二氧化矽氣凝膠-改變水的添加量 94 4-2.4(d) TRI加水改質之二氧化矽氣凝膠-改變回流溫度 94 4-2.4(e) TRI和APTMS加水雙重改質之二氧化矽氣凝膠 95 4-2.5 二氧化碳吸脫附循環穩定度的分析 95 4-3 二氧化碳捕捉材的特性分析-胺類浸漬之碳氣凝膠 99 4-3.1 比表面積和孔洞體積的分析 99 4-3.2 二氧化碳捕捉量的分析 100 4-4 二氧化碳捕捉材的特性分析-胺類改質之碳氣凝膠 103 4-4.1 比表面積和孔洞體積的分析 103 4-4.2 氨官能基含量的分析 104 4-4.3 二氧化碳捕捉量的分析 105 第5章 結論 107 第6章 文獻回顧 109

    Al-Muhtaseb, S.A., and Ritter, J.A., "Preparation and properties of resorcinol-formaldehyde organic and carbon gels," Adv Mater. 15, 101 (2003)

    Bae, Y. -S and Lee, C, -H, “Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure,” Carbon. 43, 95 (2005)

    Baumann, T.F., Worsley, M.A., Han, T.Y.J., and Satcher, J.H., "High surface area carbon aerogel monoliths with hierarchical porosity," J Non-Cryst Solids. 354, 3513 (2008)

    Belmabkhout, Y., and Sayari, A., "Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions," Adsorption. 15, 318 (2009)

    Belmabkhout, Y., Serna-Guerrero, R., and Sayari, A., "Adsorption of CO2-Containing Gas Mixtures over Amine-Bearing Pore-Expanded MCM-41 Silica: Application for Gas Purification," Ind Eng Chem Res. 49, 359 (2010)

    Belmabkhout, Y., Serna-Guerrero, R., and Sayari, A., "Amine-bearing mesoporous silica for CO2 removal from dry and humid air," Chem Eng Sci. 65, 3695 (2010)

    Brinker C. J. and Scherer G. W., “Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing,” Academic Press, New York (1999)

    Chang, A.C.C., Chuang, S.S.C., Gray, M., and Soong, Y., "In-situ infrared study of CO2 adsorption on SBA-15 grafted with gamma-(aminopropyl)triethoxysilane," Energ Fuel. 17, 468 (2003)

    Chang, F.Y., Chao, K.J., Cheng, H.H., and Tan, C.S., "Adsorption of CO2 onto amine-grafted mesoporous silicas," Sep Purif Technol. 70, 87 (2009)

    Chervin, C.N., Clapsaddle, B.J., Chiu, H.W., Gash, A.E., Satcher, J.H., and Kauzlarich, S.M., "Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route," Chem Mater. 17, 3345 (2005)

    Clapsaddle, B.J., Gash, A.E., Satcher, J.H., and Simpson, R.L., "Silicon oxide in an iron(III) oxide matrix: the sol-gel synthesis and characterization of Fe-Si mixed oxide nanocomposites that contain iron oxide as the major phase," J Non-Cryst Solids. 331, 190 (2003)

    Drage, T.C., Blackman, J.M., Pevida, C., and Snape, C.E., "Evaluation of Activated Carbon Adsorbents for CO2 Capture in Gasification," Energ Fuel. 23, 2790 (2009)

    Franchi, R.S., Harlick, P.J.E., and Sayari, A., "Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2," Ind Eng Chem Res. 44, 8007 (2005)

    Gartmann, N., Schutze, C., Ritter, H., and Bruhwiler, D., "The Effect of Water on the Functionalization of Mesoporous Silica with 3-Aminopropyltriethoxysilane," J Phys Chem Lett. 1, 379 (2010)

    Gray, M.L., Soong, Y., Champagne, K.J., Baltrus, J., Stevens, R.W., Toochinda, P., and Chuang, S.S.C., "CO2 capture by amine-enriched fly ash carbon sorbents," Sep Purif Technol. 35, 31 (2004)

    Hanzawa, Y., Kaneko, K., Pekala, R.W., and Dresselhaus, M.S., "Activated carbon aerogels," Langmuir. 12, 6167 (1996)

    Harlick, P.J.E., and Sayari, A., "Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption," Ind Eng Chem Res. 45, 3248 (2006)

    Harlick, P.J.E., and Sayari, A., "Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance," Ind Eng Chem Res. 46, 446 (2007)

    He, F., Zhao, H.L., Qu, X.H., Zhang, C.J., and Qiu, W.H., "Modified aging process for silica aerogel," J Mater Process Tech. 209, 1621 (2009)

    Hicks, J.C., Drese, J.H., Fauth, D.J., Gray, M.L., Qi, G.G., and Jones, C.W., "Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly," J Am Chem Soc. 130, 2902 (2008)

    Huang, H.Y., Yang, R.T., Chinn, D., and Munson, C.L., "Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas," Ind Eng Chem Res. 42, 2427 (2003)

    Kim, G.S., and Hyun, S.H., "Effect of mixing on thermal and mechanical properties of aerogel-PVB composites," J Mater Sci. 38, 1961 (2003)

    Kim, U.J., Furtado, C.A., Liu, X.M., Chen, G.G., and Eklund, P.C., "Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes," J Am Chem Soc. 127, 15437 (2005)

    Kistler S. S., “Coherent Expanded Aerogels and Jellies,” Nature, 127, 741(1931)

    Lu, C.Y., Bai, H.L., Wu, B.L., Su, F.S., and Fen-Hwang, J., "Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites," Energ Fuel. 22, 3050 (2008)

    Ritter, H., and Bruhwiler, D., "Accessibility of Amino Groups in Postsynthetically Modified Mesoporous Silica," J Phys Chem C. 113, 10667 (2009)

    Tewari Param H., Arlon J. Hunt, Kevin D. Lofftus, “Ambient-temperature supercritical drying of transparent silica aerogels,” Mater. Lett., 3, 9 (1985)

    Wang, L.F., Ma, L., Wang, A.Q., Liu, Q., and Mang, T., "CO2 adsorption on SBA-15 modified by aminosilane," Chinese J Catal. 28, 805 (2007)

    White, L.D., and Tripp, C.P., "Reaction of (3-aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces," J Colloid Interf Sci. 232, 400 (2000)

    Yue, M.B., Chun, Y., Cao, Y., Dong, X., and Zhu, J.H., "CO2 capture by As-prepared SBA-15 with an occluded organic template," Adv Funct Mater. 16, 1717 (2006)

    Yue, M.B., Sun, L.B., Cao, Y., Wang, Y., Wang, Z.J., and Zhu, J.H., "Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine," Chem-Eur J. 14, 3442 (2008)

    Zhang, Z.J., Xu, M.Y., Wang, H.H., and Li, Z., "Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia," Chem Eng J. 160, 571 (2010)

    林佳璋,劉文宗, “二氧化碳回收技術”, 工業技術研究院化學工業研究所

    林佑勳, “含氧化錳複合氣凝膠在超級電容器之應用”, 國立清華大學化學工程研究所碩士論文 (2009)

    林鎮國, “二氧化碳的儲存”, 科學發展, 413期 (2007)

    洪錦德, “氣膠法合成之中孔洞矽值材料特性分析及其空氣汙染應用”, 國立交通大學環境工程研究所博士論文 (2009)

    徐米君, “製備較高比表面積之矽酸鋰(Li4SiO4)於二氧化碳捕捉之應用”, 國立清華大學化學工程研究所碩士論文 (2008)

    徐恆文, “二氧化碳的捕獲與分離”, 科學發展, 413期 (2007)

    黃啟峰, “二氧化碳與地球暖化”, 科學發展, 413期 (2007)

    楊斐喬, “二氧化碳的分離及捕集”, 工研院化學工業研究所

    劉文宗, “二氧化碳的資源化利用” 科學發展, 413期 (2007)

    魏得育, “二氧化矽氣凝膠與複合氣凝膠之製備與物理性質探討”, 國立清學化學工程研究所碩士論文 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE