研究生: |
郭宇鈞 Kuo, Yu-Chun |
---|---|
論文名稱: |
應用於快閃記憶體儲存系統的JPEG圖像長期保存及修復設計 Long-Term JPEG Data Protection and Recovery for NAND Flash-Based Solid-State Storage |
指導教授: |
呂仁碩
Liu, Ren-Shuo |
口試委員: |
許雅三
Hsu, Yar-Sun 劉靖家 Liou, Jing-Jia |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 32 |
中文關鍵詞: | 快閃記憶體 、非揮發性記憶體 、圖像儲存 、圖像修復 、容錯 、錯誤修復 |
外文關鍵詞: | flash memory, nonvolatile memory, image storage, image restoration, fault tolerance, error correction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
NAND 快閃記憶體 (NAND flash memory) 被廣泛的運用在安全數
位卡 (SD card) 以及嵌入式多媒體控制器晶片 (eMMC chip) 等固態硬
碟 (SSD) 儲存裝置中,在這些裝置裡頭,JPEG 圖片是最珍貴的資料
之一。在本篇論文中,我們研究考量 NAND 快閃記憶體的特性來達到
JPEG 圖像的長期保存與修復之設計。其目標是加強存在快閃記憶體中的
JPEG 可靠度以及修復由於長時間保存而資料損毀的 JPEG 檔案,並且
JPEG 圖像經過所提出的機制處理後,仍保持兼容現有的 JPEG 開圖軟
體。我們執行了真實系統的實驗將 JPEG 檔案儲存於 16 奈米、三層單元
(3-bit-per-cell) 的快閃記憶體晶片中,並使 JPEG 檔案經歷了等同於在
25°C 下 10 年的保存時間。我們首先提出兩個所觀察到的錯誤蔓延的現象
– 位元錯誤蔓延以及 DC 值錯誤蔓延,接著針對所觀察到的現象,提出了
三個技術來試著降低錯誤蔓延所造成圖片品質的影響,藉以達成第一個目
標:加強在快閃記憶體中的 JPEG 可靠度。在修復方面,我們提出霍夫
曼輔助錯誤修正並利用循環冗餘校驗來幫助位元翻轉程序修復位元錯誤。
實驗結果顯示所提出的機制可以修復損毀的 JPEG 檔案並且可以達程最
高 25.4 dB 的峰值信噪比 (PSNR) 的提昇,所需付出相對於原始檔案大
小的額外儲存成本為 10.5%。相關研究成果也已於 2019 年 5 月在美國聖
塔克拉拉舉辦的國際巨量儲存系統技術研討會 (International Conference
on Massive Storage Systems and Technology, MSST 2019) 演講發表。
NAND flash memory is widely used in solid-state storage including
SD cards and eMMC chips, in which JPEG pictures are one of the most valuable data. In this thesis, I study NAND flash memory-aware, longterm JPEG data protection and recovery. My goal is to increase the robustness of JPEG files stored in flash-based storage and rescue JPEG files that are corrupted due to long-term retention. JPEG files with my proposed protection techniques are compatible with existing JPEG viewers. I conduct real-system experiments by storing JPEG files on 16 nm, 3-bit-per-cell flash chips and let the JPEG files undergo a retention process equivalent to ten years at 25°C. I first show two observed
error propagation phenomena – bit error propagation and DC error
propagation, and propose three techniques to help mitigating the effect of error propagation and thus to increase the robustness of JPEG files. As for correction, I propose Huffman-assisted error correction which utilize CRC (cyclic redundancy check) to help bit-flipping procedure. Experimental results show that the proposed techniques can rescue corrupted JPEG files to achieve a PSNR improvement of up to 25.4 dB with storage overhead 10.5% compared to original data size. The design and experimental results of this thesis have been accepted as an oral presentation at International Conference on Massive Storage Systems and Technology (MSST) held May 20-24, 2019 at Santa Clara
University, Santa Clara, USA.
[1] “The state of the microSD memory card in 2016 (https://www.sdcard.org/press/thoughtleadership/160513The_State_of_the_microSD_Memory_Card_in_2016.html),” 2016.
[2] IHS Markit, “A tale of two memories: NAND eMMC hits a record year, while NOR flash shrinks further, 2014.”
[3] P. Rhodes, “Why is it so hard to replace JPEG?(www.redsharknews.com/
technology/item/6145-why-is-it-so-hard-to-replace-jpeg),” 2019.
[4] E. Yaakobi, L. Grupp, P. H. Siegel, S. Swanson, and J. K. Wolf, “Characterization and error-correcting codes for TLC flash memories,” in International Conference on Computing, Networking and Communications (ICNC), 2012.
[5] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error characterization, mitigation, and recovery in flash-memory-based solid-state drives,” Proc. IEEE, vol. 105, pp. 1666–1704, Sep. 2017.
[6] J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman & Hall/Crc Cryptography and Network Security Series). Chapman & Hall/CRC, 2007.
[7] “Kodak PhotoCD (www.math.purdue.edu/~lucier/PHOTO_CD/).”
[8] bkenwright, “loadjpg.cpp(http://www.xbdev.net/image_formats/jpeg/jpeg_decoder_source/).”
[9] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, pp. 600–612, April 2004.
[10] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in solid-state memories,” in International Symposium on Microarchitecture (MICRO), 2013.
[11] Q. Guo, K. Strauss, L. Ceze, and H. S. Malvar, “High-density image storage using approximate memory cells,” in Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2016.
[12] Z. Liu, T. Liu, J. Guo, N. Wu, and W. Wen, “An ECC-free MLC STT-RAM based approximate memory design for multimedia applications,” in IEEE Symposium on VLSI (ISVLSI), 2018.
[13] H. Zhao, L. Xue, P. Chi, and J. Zhao, “Approximate image storage with multi-level cell STT-MRAM main memory,” in International Conference on Computer-Aided Design (ICCAD), 2017.
[14] R.-S. Liu, C.-L. Yang, and W. Wu, “Optimizing NAND flash-based SSDs via retention relaxation,” in File and Storage Technologies (FAST), 2012.
[15] R.-S. Liu, C.-L. Yang, C.-H. Li, and G.-Y. Chen, “DuraCache: A durable SSD cache using MLC NAND flash,” in Design Automation Conference (DAC), 2013.
[16] Y. Pan, G. Dong, Q. Wu, and T. Zhang, “Quasi-nonvolatile SSD: Trading flash memory nonvolatility to improve storage system performance for enterprise applications,” in High-Performance Computer Architecture (HPCA), 2012.
[17] R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M. Wang, “NVM Duet: Unified working memory and persistent store architecture,” in Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2014.