簡易檢索 / 詳目顯示

研究生: 陳芝婷
Chen, Chih-Ting
論文名稱: 利用雙相機於具有移動物體場景估測移動平台的自我運動
Ego Motion Estimation in a Scene with Moving Objects Using Stereo Cameras
指導教授: 彭明輝
Perng, Ming-Hwei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 自我運動雙相機移動物體區域配對極線幾何
外文關鍵詞: ego motion, stereo camera, moving object, region matching, epipolar geometry
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為研發一種新的「自我運動估測(ego motion estimation)」技術,技術需求來自於智慧車輛閃避路面障礙物,使用相機來自動偵測前方移動物體,欲將現有任何一種偵測移動物體的方法應用於移動平台上,皆須自我運動資訊。
    目前估測方法依據相機系統來分,可分成單相機系統和雙相機系統,經文獻回顧分析後發現欲達成本研究設定目標,深度資訊為不可或缺的資訊,故使用可提供深度資訊的雙相機進行實驗。
    本研究提出一完整的估測自我運動演算法。先以速度較快的區域配對技術來做初步配對,再針對配對好的區域中以SSD (Sum of Square Difference)找到對應點以計算點的3D位置。結合這兩種方法來計算深度資訊,特徵點配對的搜尋範圍被大幅縮小,可加快運算速度。
    然而因(1)SSD無法避免配對錯誤(2)場景當中有移動物體,以這些對應錯誤的點來估測自我運動,並不正確。本研究設計Truncated Method,以統計的方法來排除對應錯誤的點,經過數次疊代,可得到精確的自我運動參數。
    相較於現有未加入深度資訊補償的演算法,只能限定在小範圍內深度變化不大的場景,本演算法可應用在現實中的場景,包括室內及室外,場景當中有移動物體…,皆能計算誤差在兩像素內的移動平台的自我運動,後續可利用此參數做影響補償。而相較於只將SSD window size擴大企圖提高對應正確率的的方法而言,實驗結果證實,本方法能具有較短的運算時間,但卻能估測出更精確自我運動參數。


    目錄 I 圖目錄 III 表目錄 V 第一章 簡介 1 1.1 問題背景與問題描述 1 1.2 文獻回顧 5 1.2.1 自我運動估測方法的分類 5 1.2.2 極線幾何(epipolar geometry) 8 1.2.3 雙相機對應技術 10 1.3 演算法流程及研究策略 16 1.4 適用範圍和論文架構 18 第二章 立體視覺 20 2.1 相機模型(CAMERA MODEL) 20 2.1.1 齊次座標表示法 21 2.1.2 相機投影模型 23 2.1.3 相機校正(camera calibration) 24 2.2 極線幾何(EPIPOLAR GEOMETRY) 28 2.2.1 Fundamental matrix 29 2.2.2 計算Fundamental matrix 31 第三章 雙影像配對 33 3.1 彩色影像色彩分割 33 3.2 雙影像區域配對 37 3.2.1 區域配對 38 3.2.2 區域內特徵點配對 40 3.3 計算特徵點相對於相機的3D座標 44 3.4雙影像區域配對結果 46 第四章 自我運動估測 52 4.1 自我運動估測演算法 52 4.1.1 最小平方誤差法求自我運動參數 52 4.1.2 Truncated method 54 第五章 實驗結果與分析比較 56 5.1 實驗器材及限制 56 5.1.1 實驗器材及規格 56 5.1.2 解析度限制 57 5.1.3 由解析度限制定義等效誤差 62 5.2 本演算法在不同場景的自我運動估測結果 62 5.2.1 室內場景 64 5.2.2 室外場景 66 5.3 演算法分析比較 68 第六章 結論 72 6.1 本研究之貢獻 72 6.2 本研究的實用價值 73 6.3 未來發展方向 75 參考文獻 77

    [1] W. Hu, T. Tan, L. Wang and S. Maybank, “A survey on visual surveillance of object motion and behaviors," IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), Vol. 34, pp. 334-352, 2004.
    [2] T. B. Moeslund, A. Hilton and V. Kruger, “A survey of advances in vision-based human motion capture and analysis,” Computer Vision and Image Understanding, Vol. 104, pp. 90–126, 2006.
    [3] Omar Javed, Khurram Shafique, Mubarak Shah, “A Hierarchical Approach to Robust Background Subtraction using Color and Gradient Information,” IEEE Workshop on Motion and Video Computing, pp. 22-27, 2002.
    [4] D. Gutchess, M. Trajkovi C, E. Cohen-solal, D. Lyons, A. K. Jain, “A background model initialization algorithm for video surveillance,” IEEE International Conference on Computer Vision, 2001.
    [5] S. Y. Elhabian, K. M. El-Sayed and S. H. Ahmed, “Moving object detection in spatial domain using background removal techniques - State-of-art,” Recent Patents on Computer Science, Vol. 1, pp. 32-54, 2008.
    [6] Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee Chen, “Efficient Moving Object Segmentation Algorithm Using Background Registration Technique,” IEEE Trans. on Circuits Syst. Video Technol., Vol. 12, no.7, pp. 577-586, 2002.
    [7] W. Hu, T. Tan, L. Wang and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), Vol. 34, No. 3, pp. 334-52, 2004.
    [8] N. Bocheva, “Detection of motion discontinuities between complex motions,” Vision Research, Vol. 46, pp. 129–140, 2006.
    [9] D. M. Gavrila and S. Munder, “Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle,” International Journal of Computer Vision, Vol. 73, No. 1, p. 41–59, 2007.
    [10] Z. Member, G. Bebis and R. Miller, “On-Road Vehicle Detection: A Review,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 28, No. 5, p. 694-711, 2006.
    [11] Friedman, N., Russel, S. “Image segmentation in video sequences: A probabilistic approach,” Proc. of the Thirteenth Conference of Uncertainty in Artificial Intelligence (UAI), 1-3, 1997.
    [12] K. Yamaguchi, T. Kato, Y.i Ninomiya, “Vehicle Ego-Motion Estimation and Moving Object Detection using a Monocular Camera,” p.610-613, 18th International Conference on Pattern Recognition, Vol.4, 2006.
    [13] Michal Irani and P. Anandan, “A Unified Approach to Moving Object Detection in 2D and 3D Scenes,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, 1998.
    [14] Xavier Armangue, Helder Araujo ,Joaquim Salvi, “A Review on Ego-motion by Means of Differential Epipolar Geometry Applied to the Movement of a Mobile Robot,” Pattern Recognition Vol. 36, pp. 2927-2944, 2003.
    [15] M. Irani, B. Rousso and S. Peleg, “Recovery of Ego-Motion Using Region Alignment,” IEEE Transactions on Pattern Analysis and Machine, Vol. 19, No. 3, pp.268-272, 1997.
    [16] J. Horn, A. Bachmann and T. Dang, “Stereo Vision Based Ego-Motion Estimation with Sensor Supported Subset Validation,” IEEE Intelligent Vehicles Symposium, pp. 741-748, 2007.
    [17] H. Christopher Longuet-Higgins, “A Computer Algorithm for Reconstructing a Scene from Two Projections,” Nature 293, pp. 133–135, 1981.
    [18] Olivier D. Faugeras, Quang-Tuan Luong, Steven Maybank, “Camera Self-calibration: Theory and experiments,” Proceedings of European Conference on Computer Vision, pp. 321-334, 1992.
    [19] Zhengyou Zhang , Rachid Deriche, Olivier Faugeras and Quang-Tuan Luong, “A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry,” Artificial Intelligence, Vol. 78, Issues 1-2, pp. 87-119, October 1995.
    [20] Richard I. Hartley, “In Defence of the 8-point Algorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, pp. 580-593, June 1997.
    [21] Z. Zhang, “Determining the epipolar geometry and its uncertainty: a review,” International Journal Computer Vision, Vol. 27, pp. 161–198, 1998.
    [22] Brown, M.Z, Burschka, D, Hager, G.D. “Advances in computational stereo,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 25, NO. 8, 2003.
    [23] P. Aschwanden and W. Guggenbuhl, “Experimental Results from a Comparative Study on Correlation-Type Registration Algorithms,” In Robust Computer Vision (Forstner and Ruwiedel, Eds.), Wickmann, pp. 268-289, 1993.
    [24] D. N. Bhat and S. K. Nayar, “Ordinal Measures for Image Correspondence,” IEEE Transactions Pattern Analysis and Machine Intelligence, Vol. 20, pp. 415-423, 1998.
    [25] O. Faugeras, B. Hotz, H. Matthieu, T. Vieville, Z. Zhang, P. Fua, E. Theron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy, “Real Time Correlation-Based Stereo: Algorithm, Implementations and Applications,” INRIA Technical Report 2013, 1993.
    [26] V. S. Kluth, G. W. Kunkel, and U. A. Rauhala, “Global Least Squares Matching,” Proc.Int’l Geoscience and Remote Sensing Symp., Vol. 2, pp. 1615-1618, 1992.
    [27] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,” Proc. Int’l Joint Conf. A. I., pp. 674-679, 1981.
    [28] M. Hatzitheodorou1, E.A. Karabassi, G. Papaioannou, A. Boehm2 and T. Theoharis, “Stereo Matching Using Optic Flow,” Real-Time Imaging, Vol. 6, pp.251-266 ,2000.
    [29] B. K. P. Horn and B. G. Schunk, “Determining Optical Flow,” Artificial Intelligence, Vol.17, pp. 185-204, 1981.
    [30] TENG Chin-Hung, LAI Shang-Hong, CHEN Yung-Sheng, HSU Wen-Hsing, “Accurate optical flow computation under non-uniform brightness variations,” Computer Vision and Image Understanding, Vol.97, pp.315-346, 2005.
    [31] S. Randriamasy and A. Gagalowicz, “Region Based Stereo Matching Oriented Image Processing,” Proc. Computer Vision and Pattern Recognition, pp. 736-737, 1991.
    [32] S. Birchfield and C. Tomasi, “Multiway Cut for Stereo and Motion with Slanted Surfaces,” Proc. Int’l Conf. Computer Vision, Vol. 1, pp. 489-495, 1999.
    [33] V. Venkateswar and R. Chellappa, “Hierarchical Stereo and Motion Correspondence Using Feature Groupings,” Int’l J. Computer Vision, Vol. 15, pp. 245-269, 1995.
    [34] Mohamed El Ansari a,*, Lhoussaine Masmoudi b, Abdelaziz Bensrhair, “A new regions matching for color stereo images,” Pattern Recognition Letters 28, pp. 1679-1687, 2007.
    [35] C. Harris, M. Stephens, “A combined corner and edge detector,” Alvey Vision Conference, pp. 147-152, 1988.
    [36] Koschan. Andreas, Kropatsch, W., Chetverikov, D., “Dense stereo correspondence using polychromatic block matching,” Proc. 5th Internat. Conf. Computer Analysis of Images and Patterns, pp. 538-542, 1993.
    [37] Yuan, T., Subbarao, M., “Integration of multiple-baseline color stereo vision with focus and defocus analysis for 3d shape measurement,” Proc. SPIE, Three Dimensional Imaging, Optical Metrology, and Inspection IV, Vol. 3520, pp. 44-51, 1998.
    [38] den Ouden, H.E.M., van Ee, R., de Haan, E.H., “Colour helps to solve the binocular matching problem,” J. Physiol. (567.2), pp.665-671 , 2005.
    [39] Joon Hee Han, Member, IEEE, and Jong Seung Park, “Contour Matching Using Epipolar Geometry,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, NO. 4, 2000.
    [40] M. El Ansari , L. Masmoudi, L. Radouanem, “A new region matching method for stereoscopic images,” Pattern Recognition Letters 21, pp. 283-294 ,2000.
    [41] R. Hartley and A.Zisserman, “Multiple View Geometry in Computer Vision”, Cambridge University Press, Cambridge, 2000.
    [42] V. P. Sreedharan, “Least squares algorithms for finding solutions of over determined linear equations which minimize error in an abstract norm,” Numerische Mathematik, Vol. 17, No. 5, 1971.
    [43] Stoer Josef, Bulirsch Roland, Introduction to Numerical Analysis (3rd ed.), Springer, 2002
    [44] Golub Gene H., Van Loan, Charles F., Matrix Computations (3rd ed.), Johns Hopkins, 1996.
    [45] Horn Roger A., Johnson Charles R., Matrix Analysis, Cambridge University Press, Section 2.8, 1985.
    [46] Mohamed El Ansari, Lhoussaine Masmoudi, Abdelaziz Bensrhair, “A new regions matching for color stereo images,” Pattern Recognition Letters, Vol.28, pp. 1679-1687, 2007.
    [47] Tarak Gandhi and Mohan Trivedi, "Vehicle Surround Capture: Survey of Techniques and a Novel Omni Video Based Approach for Dynamic Panoramic Surround Maps," IEEE Transactions on Intelligent Transportation Systems, Vol. 8, pp. 108-120, 2007.
    [48] Grant Grubb, Lars Nilsson and Magnus Rilbe, "3D Vision Sensing for Improved Pedestrian Safety," 2004 IEEE Intelligent Vehicles Symposium, University of Parma, Parma, Italy June 1447, pp. 19-24, 2004.
    [49] U. Franke and S. Heinrich, "Fast Obstacle Detection for Urban Traffic Situations," IEEE Transaction on Intelligent Transportation System, Vol. 3, NO. 3, SEPTEMBER, pp. 173-181, 2002.
    [50] A. Discant, A. Rogozan, C. Rusu and A. Bensrhair, "Sensors for Obstacle Detection A Survey," 30th International Spring Seminar on Electronics Technology, Cluj-Napoca ROMANIA, pp. 100-105, 2007.
    [51] 輔具資源入口網站 http://repat.moi.gov.tw/index.asp
    [52] M. Chang, H. Lee, I. Akiyama, “Image reconstruction and enhancement for subsurface radar imaging using wavefield statistics,” Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers (Cat. No.94CH34546), Vol.2, pp. 1200-1204, 1994.
    [53] S. Schmerwitz, H. U. Dohler, N. Peinecke, B. Korn, “"Stereo radar": Reconstructing 3D data from 2D radar,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 6957, pp. 695704, 2008.
    [54] P. T. Gough, B. R. Hunt, “Synthetic aperture radar image reconstruction algorithms designed for subsurface imaging,” IGARSS'97. 1997 International Geoscience and Remote Sensing Symposium. Remote Sensing - A Scientific Vision for Sustainable Development (Cat. No.97CH36042), vol. 4, pp. 1588-1590, 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE