簡易檢索 / 詳目顯示

研究生: 陳至揚
Chen, Chih-Yang
論文名稱: 陣列式生醫整合系統晶片之研究
Integrated Microarray for Bio-manipulation/detection applications
指導教授: 金雅琴
King, Ya-Chin
林崇榮
Lin, Chrong-Jung
口試委員: 金雅琴
King, Ya-Chin
蘇彬
趙天生
黃錫瑜
林泓均
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 106
中文關鍵詞: 生醫晶片感測器微線圈整合系統
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物晶片的陣列檢測技術是生物技術與醫療檢測技術上的一大突破,利用陣列方式平行處理多種類樣本,不但可以提高檢測效率、大幅縮短檢測時間,此外,陣列技術所需要使用的樣本量較少,反應時間縮短,少量樣本即可用於大量檢測,因此像是愛菲爾陣列晶片 (Affymetrix chip) 與納米基晶片 (Nanogen chip),不但種類多,應用範圍廣,使用量大,而且已經獲得生檢與醫檢技術上的標準規範認可。生物晶片在生物與檢測技術上是先進的,但是它仍無法擺脫實驗上種種複雜繁瑣的手續與大型儀器的配合,對於需要更快速度與更低檢測成本的需求上,開始有運用半導體技術進入生物晶片領域,以製做一全自動化的實驗室晶片 (Lab on a chip) 為目的。並結合微機電製程技術 (MEMS) 與微流道技術,開發出各種功能的技術產品,包括檢測、取樣、搬移、混合、分離、萃取等等。
    低溫多晶矽技術已經發展許久,目前多用於中小型、高速高解析度面版上,低溫多晶矽相較非晶矽面版技術的優點是:高電子電洞遷移率、較低臨界電壓與較佳的電晶體元件特性。然而在元件漏電與製程穩定性上仍有很大幅度的進步空間,本研究提出一個整合型自動化檢測晶片的構想,可以利用標準的低溫多晶矽製程來實現,並且從電路上解決高漏電流造成感測靈敏度低的問題。利用通過電流的微線圈陣列結構產生電磁場的微變化來控制以磁性顆粒為載體的生物樣本進行主動的取樣、搬運等動作;利用感測器陣列提供的影像資料,即時監測取樣與搬運的進行,並可用於感應生物檢測反應中的熒光反應,監測反應的進行;由於製程變異無法克服,本論文的整合型晶片由CMOS製程來完成,並利用辣根性試劑催化熒光發光反應為基礎,成功地將晶片實際應用於生物相關技術使用上。


    Biochip technology and array detection are major breakthroughs in biotechnology development. The parallel processing in multiple types of samples in an array can not only improve the detection efficiency and significantly short the detection time, but also reduce the requested sample quantities, which let the less bio-samples are needed and used to do more tests. Therefore, the biochips, such as Affymetrix chip and Nanogen chip series, have a variety of applications in wide ranges, and also have become technical standards in medical examinations and immunoassays. However, the assays using biochips still need cumbersome manual procedures to deal with the samples before applied on the testing onto the biochip. The instruments to read out the information on biochips are always huge, expensive and difficult to move. In order to satisfy the requests in shorter reaction time and lower cost, the new biochip is designed as an automatic laboratory chip with more developed functions by integrating semiconductor fabrication, micro-electric- mechanical system (MEMS), and microfluid system technology.
    Low-temperature polycrystalline silicon (LTPS) technology has been developed and used in small-scale panels with high frame-rate and high resolution performances. The LTPS devices get higher electron mobility, lower threshold voltage, and better transistor performances than the devices on the amorphous silicon. But the device leakage and variations in LTPS process are still required to be improved. The thesis proposes a concept of the integration system biochip fabricated by standard LTPS process, and designing a high-sensitivity detector circuit overcoming the leakage issue of LTPS devices in pixels. The biosamples binding on magnetic beads sorted and transported by varying electromagnetic fields, which come from current-controlled microcoil array. Integration chip is built up by CMOS process due to the serious process variations in LTPS. The prototype carries out the concept of integration chip in sorting, sampling, transporting by microcoils and in real-time monitoring by detectors. It is also proved in the application of chemiluminescence in bio-test reactions with HRP labels.

    Abstract I 摘要 III Content IV List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1. Introduction of Biochip development 1 1.2. LTPS process and characteristics 2 1.3. Motivation 3 1.4. Dissertation Organization 5 Chapter 2 Background 6 2.1. Biochip application and development 6 2.1.1 Affymetrix synthesizes microarray 8 2.1.2. Electronic Microarray Technology 10 2.2. Active bio-sampling system 12 2.2.1. Electronic microarray system 12 2.2.2. Dielectrophoresis (DEP) system 13 2.2.3. Magnetic-based system 14 2.3. Optical detection in bio-applications 17 2.4. Photo-detector applications in LTPS systems 18 2.5. Summary 20 Chapter 3 Active Bio-Sampling System 29 3.1. Device and system architecture 29 3.1.1 Magnetic bead 30 3.1.2. Magnetic Beads as Carriers for Bio-assays 30 3.2. Operations of Active Sampling Systems 31 3.2.1. Forces on Magnetic Beads 31 3.2.2. Magnetic Beads Transport 32 3.3. Simulation and Experiment 35 3.3.1 Microcoil in LTPS-TFT process 35 3.3.2 Microcoil realized in CMOS process 36 3.4 Summary 37 Chapter 4 Optical Detector Circuit for Bio-detection 47 4.1. 3T APS in LTPS 47 4.2. P-I-N Photodiode on LTPS panel 48 4.3. Pulse-frequency modulation detector 50 4.4. Summary 52 Chapter 5 Integration system of Active sampling and Detection 69 5.1. Sensor array & system 69 5.1.1. Correlated Double Sampling 70 5.1.2. Frame Driving and Column Multiplex (MUX) Circuits 70 5.2. Microcoil Driving System 71 5.3. Measurement System 72 5.4. Measurement Result and Discussion 73 5.5. Summary 74 Chapter 6 Conclusion 95 6.1 Summary 95 6.2 Future directions 96 Reference 97

    [1] W. S. Hughes, ““The potential difference between glass and electrolytes in contact with water,” J. Am. Chem. Soc., vol. 44, pp. 2860–2866, 1922.
    [2] G. Johnson et al., “Comprehensive PCR-Based Assay for Detection and Species Identification of Human Herpesviruses,” J. Clinical Microbiology, vol. 38, no. 9, pp. 3274-3279, 2000.
    [3] A. M. Maxam et al., “Promotor region for yeast 5S ribosomal RNA,” Nature, vol. 267, no. 5612, pp. 643-645, 1977.
    [4] F. Sanger et al., "Nucleotide sequence of bacteriophage φX174 DNA,” Nature, vol. 265, no. 5596, pp. 687–695, 1977.
    [5] L. M. Smith, “Fluorescence detection in automated DNA sequence analysis,” Nature, vol. 321, pp. 674–679, 1986.
    [6] J. C. Venter et al., “The Sequence of the Human Genome,” Science, vol. 291, no. 5507, pp. 1304-1351, 2001.
    [7] C. Potera, "Delivery of Time-Lapsed Live-Cell Imaging,” Genetic Engineering & Biotechnology News, vol. 28, no. 15, p. 14, 2008.
    [8] H. He et al., “Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay,” Biomicrofluidics, vol. 3, no. 2 (022401), 2009.
    [9] P. G. de Gennes, The Physics of Liquid Crystals. Oxford, U.K.: Clarendon Press, 1974.
    [10] Y. Yamamoto, T. Matsuo, and H. Komiya, “CG Silicon Technology and System Integration for Mobile Applications,” in SID Sym. Dig. Tech. Papers, 2006, vol. 37, no. 1, pp. 1173-1176.
    [11] H. Ohshima and M. Führen, “High-performance LTPS technologies for advanced mobile display applications,” in SID Sym. Dig. Tech. Papers, 2007, vol. 38, no. 1, pp. 1482-1485.
    [12] J. Kanicki, F. R. Libsch, J. Griffith, and R. Polastre, “Performance of thin hydrogenated amorphous silicon thin-film transistors,” J. Appl. Phys., vol. 69, pp. 2339-2345, 1991.
    [13] T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, “Low-temperature fabrication of high mobility poly-Si TFTs for large-area LCDs,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1929-1933, 1989.
    [14] T. Matsuo and T. Muramatsu, “CG Silicon Technology and Development of System on Panel,” in SID Sym. Dig. Tech. Papers, 2004, vol. 35, no. 1, pp. 856-859.
    [15] T. Nishibe and H. Nakamura, “Value-Added Circuit and Function Integration for SOG (System-on Glass) Based on LTPS Technology,” in SID Sym. Dig. Tech. Papers, 2006, vol. 37, no. 1, pp. 1091-1094.
    [16] K. Komiya, M. Kanzaki, and T. Yamashita, “A 2048-element contact-type linear image sensor for facsimile,” in IEEE IEDM Tech. Dig., 1981, vol. 27, pp. 309-312.
    [17] Y. Kanoh et al., “A contact-type linear sensor with a GD a-Si:H photodetector array,” in IEEE IEDM Tech. Dig., 1981, vol. 27, pp. 313-316.
    [18] T. Tsukada et al., “Solid-state color imager using an a-Si:H photoconductive film,” in IEEE IEDM Tech. Dig., 1981, vol. 27, pp. 479-482.
    [19] T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT’s analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, vol. 38, no. 5, pp. 1086-1093, 1991.
    [20] M. J. Powell et al., “Seamless tiling of amorphous silicon photodiode-TFT arrays for very large area X-ray image sensors,” IEEE Trans. Med. Imag., vol. 17, no. 6, pp. 1080-1083, 1998.
    [21] J. S. Kim et al., “Novel structure of 21.6 inch a-Si:H TFT array for the direct X-ray detector,” J. Inf. Display, vol. 1, no. 1, pp. 29-31, 2000.
    [22] M. Miroa and E. H. Hansenb, “Miniaturization of environmental chemical assays in flowing systems: The lab-on-a-valve approach vis-à-vis lab-on-a-chip microfluidic devices,” Analytica Chimica Acta, vol. 600, no. 1-2, pp. 46-57, 2007.
    [23] X. Chen et al., “A CMOS-Compatible DNA Microarray Using Optical Detection Together With a Highly Sensitive Nanometallic Particle Protocol,” IEEE Electron Device Letters, vol. 26, no. 4, pp. 240-242, 2005.
    [24] H. Eltoukhy, K. Salama, and A. E. Gamal, “A 0.18-μm CMOS Bioluminescence Detection Lab-on-Chip,” IEEE Journal of Solid-Stste Circuits, vol. 41, no. 3, pp. 651-662, 2006.
    [25] V. P. Chodavarapu et al., “CMOS-Based Phase Fluorometric Oxygen Sensor System,” IEEE Transactions on Circuits and Systems, vol. 54, no. 1, pp. 111-118, 2007.
    [26] R. L. Nicholson, M. L. Ladlow and D. R. Spring, “Fluorous tagged small molecule microarrays,” Chemical Communications, no. 38, pp. 3906-3908, 2007
    [27] M. J. Heller, “DNA Microarray Technology: Devices, Systems, and Applications,” Annu. Rev. Biomed. Eng., vol. 4, pp. 129-153, 2002.
    [28] A. Butte, “The Use and Analysis of Microarray Data,” Nature Reviews, vol. 1, pp. 951-960, 2002.
    [29] E. M. Southern, “DNA microarrays: history and overview,” in Methods in Molecular Biology, Vol. 170, DNA Arrays Methods and Protocols, J. B. Rampal, Ed. NJ: Humana Press, 2001, pp. 1-15.
    [30] V. G. Cheung et al., “Making and reading microarrays,” Nat. Genet., vol. 21, pp. 15-19, 1999.
    [31] P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nat. Genet., vol. 21, pp. 33–37, 1999.
    [32] D. J. Duggan et al., “Expression profiling using cDNA microarrays,” Nat. Genet., vol. 21, pp. 10–14, 1999.
    [33] J. G. Hacia, “Resequencing and mutational analysis using oligonucleotide microarrays,” Nat. Genet., vol. 21, pp. 42–47, 1999.
    [34] C. Debouck and P. N. Goodfellow, “DNA microarrays in drug discovery and development,” Nat. Genet., vol. 21, pp. 48–50, 1999.
    [35] J. Khan et al., “Expression profiling in cancer using cDNA microarrays,” Electrophoresis, vol. 20, no. 2, pp. 223–229, 1999.
    [36] S. Granjeaud, F. Bertucci, and B. R. Jordan, “Expression profiling: DNA arrays in many guises,” Bioessays, vol. 21, no. 9, pp. 781–790, 1999.
    [37] D. Ravine, “Automated mutation analysis,” J. Inherit. Metab. Dis., vol. 22, no. 4, pp. 503–518, 1999.
    [38] T. C. Freeman, K. Lee, and P. J. Richardson, “Analysis of gene expression in single cells,” Curr. Opin. Biotechnol., vol. 10, no. 6, pp. 579–582, 1999.
    [39] M. Schena and R. W. Davis, “Genes, genomes, and chips,” in DNA Microarrays: A Practical Approach, M. Schena, Ed. Oxford: Oxford Univ. Press, 1999, pp. 1–15.
    [40] M. Schena, “Genome analysis with gene expression microarrays,” Bioessays, vol. 18, no. 5, pp. 427–31, 1996.
    [41] M. Schena, “Microarrays: biotechnology’s discovery platform for functional genomics,” Trends Biotechnol., vol. 16, no. 7, pp. 301–306, 1998.
    [42] M. Schena, “Parallel human genome analysis: microarray-based expression monitoring of 1000 genes,” Proc. Natl. Acad. Sci. USA, vol. 93, no. 20, pp. 10614–10619, 1996.
    [43] J. L. DeRisi, V. R. Iyer, and P. O. Brown, “Exploring the metabolic and genetic control of gene expression on a genomic scale,” Science, vol. 278, pp. 680–686, 1997.
    [44] J. R. Pollack et al., “Genome-wide analysis of DNA copy-number changes using cDNA microassays,” Nat. Genet., vol. 23, pp. 41–46, 1999.
    [45] A. Marshall, “DNA chips: an array of possibilities,” Nat. Biotechnol., vol. 16, pp. 27–31, 1998.
    [46] S. P. Fodor et al., “Light-directed, spatially addressable parallel chemical synthesis,” Science, vol. 251, pp. 767–773. 1991.
    [47] A. C. Pease, “Light-generated oligonucleotide arrays for rapid DNA sequence analysis,” Proc. Natl. Acad. Sci. USA, vol. 91, pp. 5022–5026, 1994.
    [48] G. H. McGall and F. A. Fidanza, “Photo-lithographic synthesis of arrays,” in Methods in Molecular Biology, Vol. 170, DNA Arrays Methods and Protocols, J. B. Rampal, NJ: Humana Press, 2011, pp. 71–101.
    [49] D. J. Lockhart et al., “Expression monitoring by hybridization to high-density oligonucleotide arrays,” Nat. Biotechnol., vol. 14, pp. 1675–1680, 1996
    [50] K. L. Gunderson, “Mutation detection by ligation to complete n-mer DNA arrays,” Genome Res., vol. 8, pp. 1142–1153, 1998.
    [51] R. J. Lipshutz, “High density synthetic oligonucleotide arrays,” Nat. Genet., vol. 21, pp. 20–24, 1999.
    [52] C. A. Harrington, C. Rosenow, and J. Retief, “Monitoring gene expression using DNA microarrays,” Curr. Opin. Microbiol., vol. 3, pp. 285–291, 2000.
    [53] G. H. McGall et al., “Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists,” Proc. Natl. Acad. Sci. USA, vol. 93, pp. 13555–13560, 1996.
    [54] J. E. Beecher, G. H. McGall, and M. J. Goldberg, “Chemically amplified photolithography for the fabrication of high density oligonucleotide arrays,” Am. Chem. Soc. Div. Polym. Mater. Sci. Eng., vol. 76, pp. 597–598, 1997.
    [55] M. J. Kozal et al., “Extensive polymorphisms observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays,” Nat. Med., vol. 7, pp. 753–759, 1996.
    [56] J. A. Fidanza and G. H. McGall, “High-density nucleoside analog probe arrays for enhanced hybridization,” Nucleosides Nucleotides, vol. 18, pp. 1293–1295, 1999.
    [57] M. J. Heller, “An active microelectronics device for multiplex DNA analysis,” IEEE Eng. Med. Biol., vol. 15, pp. 100–103, 1996.
    [58] R. Sosnowski et al., “Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control,” Proc. Natl. Acad. Sci., vol. 94, pp. 1119–1123, 1997.
    [59] C. Edman et al., “Electric field directed nucleic acid hybridization on microchips,” Nucl. Acids Res., vol. 25, pp. 4907–4914, 1998.
    [60] M. J. Heller et al., “Active microelectronic arrays for DNA hybridization analysis,” in DNA Microarrays: A Practical Approach, M. Schena, Ed. Oxford: Oxford Univ. Press, 1999, pp. 167–185.
    [61] E. Tu, A. Forster, and M. J. Heller, “Active microelectronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications,” Electrophoresis, vol. 21, pp. 157–164, 2000.
    [62] P. Gilles et al., “Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips,” Nat. Biotechnology, vol. 17, pp. 365–370, 1999.
    [63] P. Swanson et al., “A fully multiplexed CMOS biochip for DNA analysis. Unrealized potential of DNA testing,” Sens. Actuators B, vol. 64, pp. 22–30, 2000.
    [64] R. Radtkey et al.,” Rapid high fidelity analysis of simple sequence repeats on an electronically active DNA microchip,” Nucleic Acids Res., vol. 28, pp. E17, 2000.
    [65] A. A. Alzadeh et al., “Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling,” Nature, vol. 403, no. 6769, pp. 503-511, 2000.
    [66] J. A. Macoska, “The Progressing Clinical Utility of DNA Microarrays,” C. A. Cancer J. Clin.; vol. 52, no. 1, pp. 50-59, 2002.
    [67] L. Feng and M. Nerenberg, “ Electronic microarray for DNA analysis,” Gene. Ther. Mol. Biol., vol. 4, pp. 183-191, 1999.
    [68] M. J. Heller et al., Integrated Microfabricated Biodevices, New York: Marcel Dekker Inc., 2002.
    [69] M. J. Heller, A. H. Forster, E. Tu, "Active Microelectronic Chip Devices Which Utilize Controlled Electrophoretic Fields for Multiplex DNA Hybridization and Other Genomic Applications,” Electrophoresis, vol. 21, pp. 157-164, 2000.
    [70] M. J. Heller and E. Tu, “Active programmable electronic devices for molecular biological analysis and diagnostics,” U.S. Patent 5,605,662, November 1, 1993.
    [71] R. Sosnowski et al., “Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications,” Psychiatr. Genet., vol. 12, pp. 181-192, 2002.
    [72] S. Fiedler et al., “Dielectrophoretic sorting of particles and cells in a microsystem,” Anal. Chem., vol. 70, pp. 1909–1915, 1998.
    [73] P. R. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis, vol. 23, pp. 1973–1983, 2002.
    [74] J. Voldman et al., “Holding forces of single-particle dielectrophoretic traps,” Biophys. J., vol. 80, pp. 531–541, 2001.
    [75] Y. Huang et al., “The removal of human breast cancer cells from hematopoietic CD34+ stem cells by dielectrophoretic field-flow-fractionation,” J. Hematother. Stem Cell Res., vol. 8, pp. 481–490, 1999.
    [76] X. B. Wang et al., “Cell separation by dielectrophoretic field-flow-fractionation,” Anal. Chem., vol. 72, pp. 832–839, 2000.
    [77] J. Yang et al., “Cell separation on microfabricated electrodes using dielectrophoretic / gravitational field-flow fractionation,” Anal. Chem., vol. 71, pp. 911–918, 1999.
    [78] M. Borgatti et al., “Dielectrophoresis (DEP) based ’lab-on-a-chip’’ devices for efficient and programmable binding of microspheres to target cells,” Int. J. Oncol., vol. 27, pp. 1559–1566, 2005.
    [79] R. Gambari et al., “’Lab-on-a-Chip’ Devices for Cellular Arrays Based on Dielectrophoresis,” in Bioarrays: From Basics to Diagnostics, K. Appasani, Ed. Totowa, N.J.: Humana Press , 2007, pp. 231-243.
    [80] G. Medoro et al., “A lab-on-a-chip for cell detection and manipulation,” G. Medoro et al., “A lab-on-a-chip for cell detection and manipulation,” IEEE Sensors Journal, vol. 3, no. 3, pp. 317-325, 2003.
    [81] Y. Huang et al., “Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays,” Anal. Chem., vol. 74, pp. 3362–3371, 2002.
    [82] J. Cheng et al., “Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip,” Anal. Chem., vol. 70, pp. 2321–2326, 1998.
    [83] C. Xu et al., “Dielectrophoresis of human red cells in microchips,” Electrophoresis, vol. 20, pp. 1829–1831, 1999.
    [84] Z. Yu et al., “Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips,” Biomed. Microdevices, vol. 6, pp. 311–324, 2004.
    [85] G. H. Markx, M. S. Talary, and R. Pethig, “Separation of viable and non-viable yeast using dielectrophoresis,” J. Biotechnol., vol. 32, pp. 29–37, 1994.
    [86] Y. Huang et al., “Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies,” Phys. Med. Biol., vol. 37, pp. 1499–1517, 1992.
    [87] P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Trop., vol. 89, pp. 357–369, 2004.
    [88] N. Bianchi et al., “Accumulation of gamma-globin mRNA and induction of erythroid differentiation after treatment of human leukaemic K562 cells with tallimustine.” Br. J. Haematol., vol. 113, pp. 951–961, 2001.
    [89] C. Mischiati et al., “Complexation to cationic microspheres of double-stranded peptide nucleic acid-DNA chimeras exhibiting decoy activity,” J. Biomed. Sci., vol. 11, pp. 697–704, 2004.
    [90] N. Pamme, “Magnetism and microfluidics,” Lab Chip, vol. 6, pp. 24-38, 2006.
    [91] Martin A. M. Gijs*, F. Lacharme and U. Lehmann, “Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis,” Chem. Rev., vol. 110, no. 3, pp. 1518-1563, 2010.
    [92] J. Nilsson et al., “Review of cell and particle trapping in microfluidic systems,” Analytica Chimica Acta, vol. 649, no. 2, Pages 141-157, 2009.
    [93] J. Joung, J. Shen, and P. Grodzinski, “Micropumps based on alternating high-gradient magnetic fields,” IEEE Transactions on Magnetics, vol. 36, no. 4, pp. 2012–2014, 2000.
    [94] T. Deng et al., “Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography,” Applied Physics Letters, vol. 78, no. 12, pp. 1775–1777, 2001.
    [95] C. S. Lee, H. Lee, and R. M. Westervelt, “Microelectromagnets for the control of magnetic nanoparticles,” Applied Physics Letters, vol. 79, no. 20, pp. 3308–3310, 2001.
    [96] A. Rida, V. Fernandez, and M. A. M. Gijs, “Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field,” Applied Physics Letters, vol. 83, no. 12, pp. 2396–2398, 2003.
    [97] R. Wirix-Speetjens et al., “A force study of on-chip magnetic particle transport based on tapered conductors,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 4128–4133, 2005.
    [98] R. Wirix-Speetjens et al., “Enhanced magnetic particle transport by integration of a magnetic flux guide: Experimental verification of simulated behavior,” Journal of Applied Physics, vol. 99, no. 8, pp. 08P101, 2006.
    [99] A. E. Dixon, S. Damaskinos, “Confocal scanning of genetic microarrays,” Methods Mol. Biol., vol. 170, pp. 237–246, 2001.
    [100] E. Waddell et al., “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem., vol. 72, no. 24, pp. 5907–5917, 2000.
    [101] G. E. Marti, A. Gaigalas, and R. F. Vogt Jr., “Recent developments in quantitative fluorescence calibration for analyzing cells and microarrays,” Cytometry, vol. 42, no. 5, p. 263, 2000.
    [102] C. Battaglia et al., “Analysis of DNA microarrays by non-destructive fluorescent staining using SYBR green II,” Biotechniques, vol. 29, no. 1, pp. 78–81, 2000.
    [103] F. van De Rijke et al., “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol., vol. 19, no. 3, pp. 273–76, 2001.
    [104] R. L. Stears, R. C. Getts, and S. R. Gullans, “A novel, sensitive detection system for high-densitymicroarrays using dendrimer technology,” Physiol. Genomics, vol. 3, no. 2, pp. 93–99, 2000.
    [105] K. Maeda and Y. Kubota, “LCD-related technologies system-LCD with monolithic ambient-light sensor system,” Sharp Tech. J., vol. 92, pp. 35-39, 2005.
    [106] S. Koide, S. Fujita, T. Ito, S. Fujikawa, and T. Matsumoto, “LTPS ambient light sensor with temperature compensation,” in Proc. Int. Display Workshops, 2006, vol. 2, pp. 689-90.
    [107] T. Nakamura et al., “A TFT-LCD with image capture function using LTPS technology,” in Proc. Int. Display Workshops, 2003, vol. 10, pp. 1661-1662.
    [108] N. Tada et al., “A touch panel function integrated LCD using LTPS technology,” in Proc. Int. Display Workshops, 2004, vol. 11, pp. 349-50.
    [109] T. Nakamura et al., “A touch panel function integrated LCD including LTPS A/D converter,” SID Symp. Digest of Tech. Papers, vol. 36, pp. 1054-1055, 2005.
    [110] T. Nishibe and H. Nakamura, “Value-added SOG (system-on-glass) display based on LTPS technology,” in Int. Workshop on Active-Matrix Flatpanel Display and Devices, 2006, pp. 61-64.
    [111] W. J. Nam et al., "Low-voltage driven p-type polycrystalline silicon thin-film transistor integrated gate driver circuits for low-cost chip-on-glass panel," Jpn. J. Appl. Phys., vol. 45, pp. 4389-4391, 2006.
    [112] K. W. Park, K. H. Kim, H. S. Maeng, S. H. Lee, C. H. Kim, and K. C. Moon, “Development of Low-Power-Consumption System on Glass Liquid Crystal Display,” Jpn. J. Appl. Phys., vol. 46, pp. 1370-1374, 2007.
    [113] Y. J. Kim et al., “Data- and Gate-Line-Sharing Pixel Structure and Driving Method for Low-Cost Polycrystalline Silicon Thin Film Transistor Liquid Crystal Displays,” Jpn. J. Appl. Phys., vol. 46, pp. 1375-1379, 2007.
    [114] C. W. Byun and B. D. Choi, “Hybrid 8-bit Digital-to-Analog Converter for Mobile Active Matrix Flat Panel Displays Using Low-Temperature Polycrystalline Silicon Thin Film Transistors,” Jpn. J. Appl. Phys., vol. 46, pp. 1380-1386, 2007.
    [115] K. C. Lee et al., “Optical feedback system with integrated color sensor on LCD,” Sensors and Actuators A: Physical, vol. 130-131, pp. 214-219, 2006.
    [116] L. B. Koutny et al., “Microchip electrophoretic immunoassay for serum cortisol,” Analytical Chemistry, vol. 68, no. 1, pp. 18–22, 1996.
    [117] N. Chiem and D. J. Harrison, “Microchip-based capillary electrophoresis for immunoassays: Analysis of monoclonal antibodies and theophylline,” Analytical Chemistry, vol. 69, no. 3, pp. 373–378, 1997.
    [118] A. G. Hadd et al., “Microchip device for performing enzyme assays,” Analytical Chemistry, vol. 69, no. 17, pp. 3407–3412, 1997.
    [119] K. Sato et al., “Integration of an immunosorbent assay system: Analysis of secretory human immunoglobulin A on polystyrene beads in a microchip,” Analytical Chemistry, vol. 72, no. 6, pp. 1144–1147, 2000.
    [120] L. G. Rashkovetsky et al., “Automated microanalysis using magnetic beads with commercial capillary electrophoretic instrumentation,” Journal of Chromatography A, vol. 781, no. 1–2, pp. 197–204, 1997.
    [121] Fan ZH et al., “Dynamic DNA hybridization on a chip using paramagnetic beads,” Analytical Chemistry, vol. 71, no. 21, pp. 4851–4859, 1999.
    [122] Z. H. Fan, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal Chem., vol. 71, no. 21, pp. 4851-4859, 1999.
    [123] S. S. Papell “Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles,” U. S. patent 3,215,572, November 02,1965.
    [124] M. Zborowski et al., “Continuous cell separation using novel magnetic quadrupole flow sorter,” Journal of Magnetism and Magnetic Materials, vol. 194, no. 1–3, pp. 224–230, 1999.
    [125] S. Miltenyi et al., “High-gradient magnetic cell-separation with macs,” Cytometry, vol. 11, no. 2, pp. 231–238, 1990.
    [126] F. M. White, Fluid Mechanics. New York: McGraw-Hill, 1999.
    [127] H. Faxen, “The resistance against the movement of a rigour sphere in viscous fluids, which is embedded between two parallel layered barriers,” Annalen Der Physik, vol. 68, no. 10, pp. 89–119, 1922.
    [128] R. Wirix-Speetjens et al., “A force study of on-chip magnetic particle transport based on tapered conductors,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 4128–4133, 2005.
    [129] J. Gregory, “Approximate expressions for retarded Vanderwaals interaction,” Journal of Colloid and Interface Science, vol. 83, no. 1, pp. 138–145, 1981.
    [130] G. Kar, S. Chander, and T. S. Mika, “Potential-energy of interaction between dissimilar electrical double-layers,” Journal of Colloid and Interface Science, vol. 44, no. 2, pp. 347–355, 1973.
    [131] B. Y. Tsui, C. P. Lin, C. F. Huang, Y. H. Xiao, “0.1µm Poly-Si Thin Film Transistors for System-on-Panel (SoP) Applications,” in IEEE International Electron Devices Meeting (IEDM) Tech. Dig., 2005, pp. 911–914.
    [132] M. K. Ryu, et al., “SLS Technology for High Performance Poly-Si TFTs and Its Application to Advanced LCD and SOG,” SID Symposium Digest of Technical Papers, vol. 37, no. 1, pp. 1272-1275, 2006.
    [133] A. Gat et al., “CW laser anneal of polycrystalline silicon: Crystalline structure, electrical properties,” Appl. Phys. Lett., vol. 33, pp. 775-778, 1978.
    [134] D. Z. Peng et al., “Reliability of laser-activated low-temperature polycrystalline silicon thin-film transistors,” Appl. Phys. Lett., vol. 80, pp. 4780-4782, 2002
    [135] N. M. Johnson, D. K. Biegelsen, and M. D. Moyer, “Deuterium passivation of grain‐boundary dangling bonds in silicon thin films,” Appl. Phys. Lett., vol. 40, no. 10, pp. 882 – 884, 1982.
    [136] S.D. Brotherton, J.R. Ayres, and M.J. Trainor, “Leakage Currents in Poly-Si Thin Film Transistors,” Journal of Solid State Phenomena, vol. 51, pp. 621, 2001
    [137] T. H. Ihn et al., “A study on the leakage current of poly-Si TFTs fabricated by metal induced lateral crystallization,” Microelectronics and Reliability, vol. 39, no. 1, pp. 53-58, 1999.
    [138] S. D. Brotherton et al., “Influence of melt depth in laser crystallized poly-Si thin film transistors,” J. Appl. Phys., vol. 82, no. 8, pp. 4086- 4094, 1997.
    [139] J. G. Fossum and F. A. Lindholm, “Theory of grain-boundary and intragrain recombination currents in polysilicon p-n-junction solar cells,” IEEE Transactions on Electron Devices, vol. ED-27, pp. 692-700, 1980.
    [140] T. N. Swe and K. S. Yeo, “An Accurate Photodiode Model for DC and High Frequency SPICE Circuit Simulation,” in Technical Proceedings of the 2001 International Conference on Modeling and Simulation of Microsystems, 2001, vol. 1, no. 7, pp.362 – 365.
    [141] L. Ravezzi et al., “A versatile photodiode SPICE model for optical microsystem simulation,” Microelectronics Journal, vol. 31, no. 4, pp. 277-282, 2000.
    [142] J. Ohta et al., “Proposal of Application of Pulsed Vision Chip for Retinal Prosthesis,” Jpn. J. Appl. Phys., vol. 41, pp. 2322-2325, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE