簡易檢索 / 詳目顯示

研究生: 劉琦崴
論文名稱: 在高分子材料內溶劑除吸收及其相關現象
Solvent Desorption in Polymer and Related Phenomena
指導教授: 李三保
口試委員: 周晟
薛承輝
黃健朝
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 71
中文關鍵詞: 除吸收揮發理論擴散方程式
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文第一部份,探討PMMA的單邊除吸收濃度分佈,我們分析在PMMA的單邊除吸收在不同的溫度中的兩個初始條件。擴散方程式以揮發理論做基礎被提出來並且利用分離係數法解出解析解。理論預測和實驗數據相當符合。利用擴散係數和揮發速率去配對曲線符合阿瑞尼士方程式。從位移數據,可以得知甲醇在PMMA中傳輸的部分莫耳體積。我們建立並分析PMMA在質傳中的彈性模型的應力分佈和縱向位移量。
    第二部份探討表面波紋,表面波紋形成的條件為當高分子塊發生足夠大的壓縮應力,我們發現在PC由質傳所產生的壓縮應力在靠近雙邊除吸收表面。我們提出一個方法結合溶劑引發應力及在壓縮應力的高分子塊機械不穩定性來分析PC的溶劑引發表面波紋。計算出來的表面波長和實驗結果相符合而且趨勢相同。


    Acknowledgements i Abstract ii Contents iii List of Tables v Figure Captions vi Chapter 1 Introduction 1 1.1 Diffusion in glassy polymers 1 1.2 Diffusion-induced stresses 5 1.3 Wrinkling phenomenon 7 1.4 Motivation and purpose of this study 10 Chapter 2 One-side desorption of a polymer slab -General model and analysis of PMMA data- 11 2.1 Solvent desorption in a polymer slab 12 2.1.1 Concentration profile 12 2.1.2 Total amount in the slab 13 2.2 Solvent-induced stresses in a polymer slab 15 2.2.1 Chemical stresses in a thin slab: Elastic model 15 2.2.2 Longitudinal displacement of the slab 17 2.2.3 Partial molar volume of methanol in PMMA during desorption 17 2.2.4 Stress distributions for one-side desorption of PMMA 18 Chapter 3 Solvent-induced surface pattern in polymer slab -A quantitative method to compare with PC data- 34 3.1 Concentration profile 35 3.1.1 Absorption 35 3.1.2 Desorption 35 3.1.3 Resorption 36 3.2 Solvent-induced surface pattern in polycarbonate 37 3.2.1 Stress distribution 37 3.2.2 Mechanical instability of a polymer slab 38 3.2.3 Pattern wavelength 41 Chapter 4 Conclusions 54 References 56 List of Tables 2.1 Properties of PMMA and methanol. 19 2.2 Diffusion coefficients, ratios of equilibrium concentration to saturated concentration, evaporation constant and evaporation rate for one-side desorption of methanol in PMMA for Mi /M∞=14.6%. 20 2.3 Diffusion coefficients, ratios of equilibrium concentration to saturated concentration, evaporation constant and evaporation rate for one-side desorption of methanol in PMMA for Mi /M∞=35.3%. 21 2.4 Activation energies of methanol diffusivity ED and evaporation rate Ev for one-side desorption in PMMA……………………………………………………………………22 2.5 Partial molar volume for one-side desorption of methanol in PMMA at different Temperature………………………..…...……………………………………….22 3.1 Properties of polycarbonate and acetone. 45 3.2 Selected parameters of diffusion coefficients (for absorption D, desorption D1), velocity constant v, evaporation rate constant h and ratio of equilibrium concentration to saturated concentration……………………………….....................................................46 3.3 Corresponding activation energies of diffusivity and velocity for the selected parameters listed in Table 3.2. 46 3.4Selected parameters of ta and td………………….……………….................... 47 3.5 Values of x0/2l, E2/b, and E0/b for various temperatures and absorption time ta with the thickness 2l=0.8mm. 48 3.6 Values of P/b and Pc/b for various temperatures and absorption time ta with the thickness 2l=0.8mm. 49 Figure Captions 2.1 Structural formula of (a) methanol, (b) PMMA. 23 2.2 Schematic of thin slab: one side exposed to solvent bath and the other side insulated. 23 2.3 (a) Concentration distributions at different times where , , Ce/C0=0.044 and h𝓁=2 during one-side desorption…………24 2.3 (b) Concentration distributions at different times where , , Ce/C0=0.137 and h𝓁=2 during one-side desorption. 24 2.4 Curves of mass versus time where , , Ce/C0=0.044 and h𝓁=0.5150 during one-side desorption and , , Ce/C0=0.137 and h𝓁=0.5150 during one-side desorption…...25 2.5 (a) Mass consumption of methanol in PMMA during one-side desorption at various temperatures, initiating at 14.6% of saturation…………………………25 2.5 (b) Mass consumption of methanol in PMMA during one-side desorption at various temperatures, initiating at 35.3% of saturation………………………………………….26 2.6 (a) Arrhenius plots of D1 for PMMA during one-side desorption initiating at 14.6% and 35.3% of saturation…………………………………………...........27. 2.6 (b) Arrhenius plots of ve for PMMA during one-side desorption initiating at 14.6% and 35.3% of saturation…………………………………………………………27 2.7 (a) Displacement data of PMMA at various temperatures during one-side desorption initiating at 14.6% of saturation. 28 2.7 (b) Displacement data of PMMA at various temperatures during one-side desorption initiating at 35.3% of saturation. 28 2.8(a) Displacement data of PMMA and partial molar volume of methanol in PMMA at various temperatures during one-side desorption initiating at 14.6% of saturation…………………………………………………………………………29 2.8 (b) Displacement data of PMMA and partial molar volume of methanol in PMMA at various temperatures during one-side desorption initiating at 35.3% of saturation…….29 2.9 (a) Transverse stress distributions in PMMA at different times for one-side desorption at 25C, initiating at 14.6% of saturation. 30 2.9 (b) Transverse stress distributions in PMMA at different times for one-side desorption at 35C, initiating at 14.6% of saturation. 30 2.9 (c) Transverse stress distributions in PMMA at different times for one-side desorption at 45C, initiating at 14.6% of saturation. 31 2.9(d) Transverse stress distributions in PMMA at different times for one-side desorption at 55C, initiating at 14.6% of saturation. 31 2-10(a) Transverse stress distributions in PMMA at different times for one-side desorption at 25C, initiating at 35.3% of saturation. 32 2-10(b) Transverse stress distributions in PMMA at different times for one-side desorption at 35C, initiating at 35.3% of saturation. 32 2-10(c) Transverse stress distributions in PMMA at different times for one-side desorption at 45C, initiating at 35.3% of saturation. 33 2-10(d) Transverse stress distributions in PMMA at different times for one-side desorption at 55C, initiating at 35.3% of saturation. 33 3.1 Structural formula of (a) acetone, (b) polycarbonate. 49 3.2 Pattern wavelength versus time for PC of thickness 0.8 mm immersed in acetone at various temperatures. 49 3.3 Surface patterns on PC of thickness 0.8 mm after immersing in acetone at 35°C for different times: (a) 20, (b) 40, (c) 60, (d) 80, and (e) 100 sec. 50 3.4 Schematic of thin slab located between (-l,l). 51 3.5 The model of a polymer slab on which the elastic deformation energy is calculated in the text. 51 3.6 Stress distributions for different absorption times where , , , and during two-side desorption 52 3.7 Stress distributions for different absorption times where , , , , and during two-side resorption. 52 3.8 Critical wavelengths versus absorption time at various temperatures and data of polycarbonate. 53

    [1] J. Crank: The Mathematics of Diffusion, 2nd ed. Oxford University Press, Oxford (1975).
    [2] H. Fujita and A. Kishimoto: Diffusion-controlled stress relaxation in polymers. II. Stress relaxation in swollen polymers. J. Polym. Sci. 28, 547 (1958).
    [3] T. Alfrey, JR., E. F. Gurnee, and W. G. Lloyd: Diffusion in glassy polymers. J. Polym. Sci. Part C. 12, 249 (1966).
    [4] S. P. Chen and J. A. D. Edin: Fickian diffusion of alkanes through glassy polymers: effects of temperature, diffusant size, and polymer structure. Polym. Eng. Sci. 20, 40 (1980).
    [5] H. B. Hopfenberg, L. Nicolais, and E. Driole: Relaxation controlled (case II) transport of lower alcohols in poly(methyl methacrylate). Polymer 17, 195 (1976).
    [6] Peterlin: Diffusion with discontinuous swelling .III. Type II diffusion as a particular solution of conventional diffusion equation. Natl. Bur. Stand. 81A, 243 (1977).
    [7] N. L. Thomas and A. H. Windle: A theory of case II diffusion. Polymer 23, 529 (1982).
    [8] C.Y. Hui and K. C. Wu: Case-II diffusion in polymers. I. Transient swelling. J. Appl. Phys. 61, 5129 (1987).
    [9] C.Y. Hui and K. C. Wu: Case-II diffusion in polymers. II. Steady-state front motion. J. Appl. Phys. 61, 5137 (1987).
    [10] P. Gao and M. R. Mackley: A general model for the diffusion and swelling of polymers and its application to ultra-high molecular mass polyethylene. Proc. R. Soc. Lond. A 444, 267 (1994).
    [11]A. Friedman and G. Rossi: Phenomenological continuum equations to describe case II diffusion in polymeric materials. Macromolecules 30, 153 (1997).
    [12]C. M. Hansen: The significance of the surface condition in solutions to the diffusion equation: explaining ‘‘anomalous” sigmoidal, Case II, and Super Case II absorption behavior. Euro. Polym. J. 46, 651 (2010).
    [13]T. K. Kwei, T. T. Wang, and H. M. Zupko: Diffusion in glassy polymers. V. Combination of fickian and case II mechanisms. Macromolecules 5, 645 (1972).
    [14]T. T. Wang and T. K. Kwei: Diffusion in glassy polymers. reexamination of vapor sorption data. Macromolecules 6, 919 (1973).
    [15]J. P. Harmon, S. Lee, and J. C. M. Li: Methanol transport in PMMA: The effect of mechanical deformation. J. Polym. Sci.: Part A: Polym. Chem. 25(12), 3215 (1987).
    [16]J. P. Harmon, S. Lee, and J. C. M. Li: Anisotropic methanol transport in PMMA after mechanical deformation. Polymer 29(7), 1221 (1988).
    [17]C. S. Tsai and S. Lee: Transport kinetics of methanol in hydroxyethyl methacrylate homopolymer and its copolymers. J. Mater. Res. 19, 3359 (2004).
    [18]J. Chiang, C. C. Chau, and S. Lee: The mass transport of ethyl acetate in syndiotactic polystyrene. Polym. Eng. Sci. 42, 724 (2002).
    [19]K. F. Chou, C. C. Han, and S. Lee: Water Transport in Crosslinked 2-Hydroxyethyl Methacrylate. Polym. Eng. Sci. 40, 1004 (2000).
    [20]H. Ouyang, C. C. Chen, S. Lee, and H. Yang: Acetone transport in poly(ethylene terephthalate) and related phenomena. J. Polym. Sci.: Part B: Polym. Phys. 36, 163 (1998).
    [21]T. Wu, S. Lee and W. C. Chen: Acetone Absorption in Irradiated Polycarbonate. Macromolecules 28, 5751 (1995).
    [22] F.Q. Yang: Effect of local solid reaction on diffusion-induced stress. J. Appl.
    Phys. 10, 107 (2010)
    [23]S. Prussin: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32, 1876 (1961).
    [24]J. C. M. Li: Physical chemistry of some microstructural phenomena. Metall. Mater. Trans. 9A, 1353 (1978).
    [25]R. E. Reed-Hill: Physical metallurgy principles, 3rd ed. Van Nostrand, New York (1992), p.517.
    [26]B. Tuck: Introduction to diffusion in semiconductors. Peter Peregrinus, London (1974), Chap 8.
    [27]P. S. Ayres and P. G. Winchell: Dislocation arrangements resulting from the diffusion of Zn into Cu: Electron microscopy. J. Appl. Phys. 43, 816 (1972).
    [28]E. Levine, J. Washburn, and G. Thomas: Diffusion-induced defects in silicon. I. J. Appl. Phys. 38, 81 (1967).
    [29]P. J. Cousins and J. E. Cotter: The influence of diffusion-induced dislocations on high efficiency silicon solar cells. IEEE Trans. Electron Devices 53, 457 (2006).
    [30]J. P. Hirth: Effects of hydrogen on the properties of iron and steel. Metall. Mater. Trans. 11A, 861 (1980).
    [31]S. M. Sze: Physics of semiconductor devices, 2nd ed. Wiely, New York (1981), p.25.
    [32]S. P. Timoshenko and J. N. Goodier: Theory of Elasticity, 3rd ed. McGraw-Hill, New York (1970), Chap 13.
    [33]J. L. Chu and S. Lee: Diffusion‐induced stresses in a long bar of square cross section. J. Appl. Phys. 73, 3211 (1993).
    [34]J. L. Chu and S. Lee: Chemical stresses in composite circular cylinders. J. Appl. Phys. 73, 2239 (1993).
    [35]H. Y. Lin, S. C. Ko, and S. Lee: Chemical stresses in boundary layer diffusion. J. Appl. Phys. 96, 6183 (2004).
    [36]S. C. Ko, S. Lee, and Y. T. Chou: Chemical stresses in a square sandwich composite. Mater. Sci. Eng. A 409, 145 (2005).
    [37]W. L. Wang, Y. T. Chou, and S. Lee: Chemical stresses induced by grain-boundary diffusion. Metall. Mater. Trans. 29A, 2121 (1998).
    [38]W. L. Wang, Y. T. Chou, and S. Lee: Chemical stresses induced by grain-boundary diffusion in thin films. J. Mater. Res. 16, 1967 (2001).
    [39]J. L. Chu and S. Lee: The effect of chemical stresses on diffusion. J. Appl. Phys. 75, 2823 (1994).
    [40]S. C. Ko, T. Y. Zhang, and S. Lee: Influence of chemical stresses in the permeation, one-side and two-side charging processes. J. Appl. Phys. 101, 113521 (2007).
    [41]F. Yang: Interaction between diffusion and chemical stresses. Mater. Sci. Eng. A 409, 153 (2005).
    [42]R. Deshpande, Y. T. Cheng, and M. W. Verbrugge: Modeling diffusion-induced stress in nanowire electrode structures. J. Pow. Sour. 195, 5081 (2010)
    [43]M. Kim and P. Neogi: Concentration-induced stress effects in diffusion of vapors through polymer membranes. J. Appl. Polym. Sci. 29, 731 (1984).
    [44]W. L. Wang, J. R. Chen, and S. Lee: Solvent-induced stresses in glassy polymer: Elastic model. J. Mater. Res. 14, 4111 (1999).
    [45]W. L. Wang: The chemical stresses in solids. PhD Thesis (1999), Chap 9, National Tsing Hua University, Hsinchu, Taiwan.
    [46] S. Y. Chou, L. Zhuang, and L. Guo: Lithographically induced self-construction of polymer microstructures for resistless patterning. Appl. Phys. Lett. 75, 1004 (1999).
    [47] E. P. Chan and A. J. Crosby: Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18, 3238 (2006).
    [48] H. Lee, B. P. Lee, and P. B. Messersmith: A reversible wet/ dry adhesive inspired by mussels and geckos. Nature 448, 338 (2007).
    [49] E. P. Chan, E. J. Smith, R. C. Hayward, and A. J. Crosby: Surface wrinkles for smart adhesion. Adv. Mater. 20, 711 (2008).
    [50] Tokarev and S. Minko: Stimuli-responsive hydrogel thin films. Soft Matter 5, 511 (2009).
    [51] S. R. Quake and A. Scherer: From micro- to nanofabrication with soft materials. Science 290, 1536 (2000).
    [52] C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. Vanlandingham, H. C. Kim, W. Volksen, R. D Miller, and E. E. Simonyi: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545 (2004).
    [53] J. Huang, M. Juszkiewicz, W. H. de jeu, E. Cerda, T. Emrick, N. Menon, and T. P. Russell: Capillary wrinkling of floating thin polymer films. Science 317, 650 (2007).
    [54] N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146 (1998).
    [55] W. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson, and G. M. Whitesides: Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16, 3497 (2000).
    [56] K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer: Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293 (2005).
    [57] S. J. Kwon, J. G. Park, and S. H. Lee: Morphological dynamics of swelling-induced surface patterns in metal-capped polymer bilayer. J. Chem. Phys. 122, 031101 (2005).
    [58] T. Tanaka, S. T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, and T. Amiya: Mechanical instability of gels at the phase transition. Nature 325, 796 (1987).
    [59] H. Tanaka, H. Tomita, A. Takasu, T. Hayashi, and T. Nishi: Morphological and kinetic evolution of surface patterns in gels during the swelling process: Evidence of dynamic pattern ordering. Phys. Rev. Lett. 68, 2794 (1992).
    [60] J. S. Sharp and R. A. L. Jones: Swelling-induced morphology in ultrathin supported films of poly(d,l-lactide). Phys. Rev. E 66, 011801 (2002).
    [61] M. Guvendiren, S. Yang, and J. A. Burdick: Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19, 3038 (2009).
    [62] M. Guvendiren, J. A. Burdick, and S. Yang: Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter 6, 2044 (2010).
    [63] K. Sekimoto and K. Kawasaki: Elastic instability of gels upon swelling. J. Phys. Soc. Jpn. 56, 2997 (1987).
    [64] Qnuki: Pattern formation in gels. J. Phys. Soc. Jpn. 57, 703 (1988).
    [65] T. Hwa and M. Kardar: Evolution of surface patterns on swelling gels. Phys. Rev. Lett. 61, 106 (1988).
    [66] Y. H. Liu: Solvent-induced stresses and surface pattern in glassy polymer. Master Thesis (2010), chap 2, National Tsing Hua University, Hsinchu,Taiwan.
    [67] C. K. Liu, C. T. Hu, and S. Lee: Effect of compression and thickness on acetone transport in polycarbonate. Polym. Eng. Sci. 45, 687 (2005).
    [68] C. L. Huang: Solvent-induced surface ripple pattern in irradiated polycarbonate. Master Thesis (2007), National Tsing Hua University, Hsinchu, Taiwan.
    [69] K. C. Ho: Buffer-induced surface patterns of irradiated poly(2-hydroxyethyl methacrylate). Master Thesis (2010), Appendix, National Tsing Hua University, Hsinchu, Taiwan.
    [70] C. K. Liu: The effect of gamma ray radiation on the physical properties of polymers and their mechanical properties. PhD Thesis (2005), Table 4.1-3, 4.1-4, National Tsing Hua University, Hsinchu, Taiwan.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE