研究生: |
蔡伊婷 Chua, Yi Ting |
---|---|
論文名稱: |
高效率可撓式半固態染料敏化太陽能電池之電鍍背電極的特性分析 Comparison of electrodeposited platinum counter electrodes for quasi-solid state flexible dye-sensitized solar cells |
指導教授: | 開執中 |
口試委員: |
歐陽汎怡
李欣芳 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 染料敏化太陽能電池 、白金 、電鍍 、對電極 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對白金軟板(ITO/PEN)對電極在可撓式染料敏化太陽能電池中所扮演的角色進行有系統的分析,以目前最常見的三種技術:化學還原、電鍍、濺鍍進行討論。本實驗著重在電鍍方面,因其具備了能控制白金顆粒的變化、快速製備、和減少浪費等優點,在分析方面,除了進行電池元件的量測以外,還包含SEM照片的拍攝、電池阻抗的量測、在硫酸溶液和碘溶液進行CV測試,以及白金含量的分析等等;其中,本研究也建立了電鍍理論相關的機制並引進兩階段式的電鍍方法,在六氯鉑酸中,以先鍍著小顆粒但密度高的白金顆粒在基板上後,在長時間的鍍著較大顆粒的白金離子,藉由調整電鍍參數的電位、時間、圈數,並與前述分析相互對應,得到在-0.35V電鍍3秒至0.2V電鍍0.5秒時重複100迴圈時,可以得到最佳催化能力、最高的白金顆粒表面積和元件效率:藉由這一系列對應對電極的分析,推論出白金顆粒的表面積和元件的Jsc及白金催化能力成正比,而對電極的片電阻和白金顆粒的阻抗也和元件的FF相互呼應。
優化過的電鍍白金ITO/PEN對電極與以自製24wt%二氧化鈦漿料,搭配膠化的碘電解液系統,在100mW/cm2的光強度下,得到最高為7.11%的光電轉換效率,而將對電極基板換成鈦金屬並進行相同的優化過程後,可得到最高7.305%的光電轉換效率。
This study investigated the characteristics of platinum (Pt) catalyst layers having a nanoflowers structure, deposited by electrodeposition (ED) on conductive indium-doped tin oxide coated polyethylene naphthalate (ITO-PEN) for flexible dye sensitized solar cells (DSSCs). The scanning electron microscope (SEM) images energy dispersive spectroscopy (EDS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) response have evidenced the comparison of the catalytic activities of these counter electrodes (CEs) and surface area of Pt for the reduction of tri-iodide to iodide. Two-step pulse electrodeposited technique make CE have high surface area of Pt.
These results demonstrate that the flexible DSSCs using electrodeposited Pt on the ITO-PEN surface facilitates the electronic transport properties in catalytic reaction to enhance the efficiency and catalytic activity. The flexible DSSCs based on ITO-PEN CEs in conjunction with a AN-based nanocomposite gel electrolyte has achieved the highest solar cell conversion efficiency of 7.11% under one sun illumination (AM1.5, 100 mW cm−2).
[1] Wikipedia- World energy consumption: http://en.wikipedia.org/wiki/World_energy_consumption
[2] Renewable Energy Policy Network for the 21st Century, 10th annual Renewables Global Status Report(2011)
[3] National Renewable Energy Laboratory, Best Research Cell Efficiencies (2014)
[4] M. T. Spitler and M. Calvin, "Electron transfer at sensitized TiO2 electrodes." J. Chem. Phys., 1977, 66, 4294–4305
[5] B. O'Regan and M. Grätzel(1991). Nature, 353, 737–740.
[6] Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344.
[7] Chou, C. C., Hu, F. C., Yeh, H. H., Wu, H. P., Chi, Y., Clifford, J. N., ... & Lee, G. H. (2014). Highly Efficient Dye‐Sensitized Solar Cells Based on Panchromatic Ruthenium Sensitizers with Quinolinylbipyridine Anchors.Angewandte Chemie International Edition, 53(1), 178-183.
[8] Wolfbauer, G., Bond, A. M., Eklund, J. C., & MacFarlane, D. R. (2001). A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar energy materials and solar cells,70(1), 85-101.
[9] Darling, S. B., & You, F. (2013). The case for organic photovoltaics. Rsc Advances, 3(39), 17633-17648
[10] W. West. (1974) Proc. Vogel Cent. Symp., Photogr. Sci. Eng.(18), 35–48
[11] Stathatos, E., Lianos, P., Surca Vuk, A., & Orel, B. (2004). Optimization of a Quasi‐Solid‐State Dye‐Sensitized Photoelectrochemical Solar Cell Employing a Ureasil/Sulfolane Gel Electrolyte. Advanced Functional Materials, 14(1), 45-48.
[12] Thomas, S., Deepak, T. G., Anjusree, G. S., Arun, T. A., Nair, S. V., & Nair, A. S. (2014). A review on counter electrode materials in dye-sensitized solar cells.Journal of Materials Chemistry A, 2(13), 4474-4490.
[13] Lindström, H., Holmberg, A., Magnusson, E., Malmqvist, L., & Hagfeldt, A. (2001). A new method to make dye-sensitized nanocrystalline solar cells at room temperature. Journal of Photochemistry and Photobiology A: chemistry,145(1), 107-112.
[14] Kim, S. S., Nah, Y. C., Noh, Y. Y., Jo, J., & Kim, D. Y. (2006). Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells.Electrochimica Acta, 51(18), 3814-3819.
[15] Ito, S., Rothenberger, G., Liska, P., Comte, P., Zakeeruddin, S. M., Péchy, P., ... & Grätzel, M. (2006). High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2 photoanode. Chemical Communications, (38), 4004-4006.
[16] Liang, M., & Chen, J. (2013). Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews, 42(8), 3453-3488.
[17] Kang, M. G., Park, N. G., Ryu, K. S., Chang, S. H., & Kim, K. J. (2006). A 4.2% efficient flexible dye-sensitized TiO< sub> 2</sub> solar cells using stainless steel substrate. Solar Energy Materials and Solar Cells, 90(5), 574-581.
[18] Ikegami, M., Miyoshi, K., Miyasaka, T., Teshima, K., Wei, T. C., Wan, C. C., & Wang, Y. Y. (2007). Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells. Applied physics letters, 90(15), 153122.
[19] Fang, X., Ma, T., Akiyama, M., Guan, G., Tsunematsu, S., & Abe, E. (2005). Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells. Thin Solid Films, 472(1), 242-245.
[20] Tsekouras, G., Mozer, A. J., & Wallace, G. G. (2008). Enhanced performance of dye sensitized solar cells utilizing platinum electrodeposit counter electrodes. Journal of the Electrochemical Society, 155(7), K124-K128.
[21] Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical reviews, 110(11), 6595-6663.
[22] D.-G. Lee, J.-T. Hong, G.-C. Xu, H.-S. Kim, K.-J. Lee, S.-J. Park, W.-Y. Kim and H.-J. Kim, Opt. Laser Technol., 42, 934-940 (2010).
[23] Chen, L., Tan, W., Zhang, J., Zhou, X., Zhang, X., & Lin, Y. (2010). Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells. Electrochimica Acta, 55(11), 3721-3726.
[24] Lin, L. Y., Lee, C. P., Vittal, R., & Ho, K. C. (2010). Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO< sub> 2</sub> photoanode. Journal of Power Sources, 195(13), 4344-4349.
[25] (2004)表面輪廓儀操作手冊,機械與自動化工程系微機電系統實驗室,國立高雄第一科技大學
[26] 胡啟章,電化學原理與方法,五南出版社(2007)
[27] Adachi, M., Sakamoto, M., Jiu, J., Ogata, Y., & Isoda, S. (2006). Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. The Journal of Physical Chemistry B, 110(28), 13872-13880.
[28] Chen, C. M., Chen, C. H., Cherng, S. J., & Wei, T. C. (2010). Electroless deposition of platinum on indium tin oxide glass as the counterelectrode for dye-sensitized solar cells. Materials Chemistry and Physics, 124(1), 173-178.
[29] Metrohm Autolab BV: www.metrohm-autolab.com/
[30] Fu, N., Xiao, X., Zhou, X., Zhang, J., & Lin, Y. (2012). Electrodeposition of platinum on plastic substrates as counter electrodes for flexible dye-sensitized solar cells. The Journal of Physical Chemistry C, 116(4), 2850-2857.
[31] Papageorgiou, N., Maier, W. F., & Grätzel, M. (1997). An iodine/triiodide reduction electrocatalyst for aqueous and organic media. Journal of the electrochemical Society, 144(3), 876-884.
[32] Kim, S. S., Nah, Y. C., Noh, Y. Y., Jo, J., & Kim, D. Y. (2006). Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells.Electrochimica Acta, 51(18), 3814-3819.
[33] Fang, X., Ma, T., Guan, G., Akiyama, M., Kida, T., & Abe, E. (2004). Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 570(2), 257-263.
[34] Wolf, M. (1972). Historical development of solar cells. In Power Sources Symposium, 25 th, Atlantic City, N. J (pp. 120-124).
[35] Siegel, R. (2001). Thermal radiation heat transfer (Vol. 1). CRC press.
[36] Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p‐n junction solar cells. Journal of applied physics, 32(3), 510-519.
[37] Green, M. A. (1977). General solar cell curve factors including the effects of ideality factor, temperature and series resistance. Solid-State Electronics,20(3), 265-266.
[38] McEvoy, A. J., & Grätzel, M. (2003). Dye‐Sensitized Regenerative Solar Cells.Encyclopedia of Electrochemistry.
[39] Li, D., & Xia, Y. (2003). Fabrication of titania nanofibers by electrospinning.Nano Letters, 3(4), 555-560.J. Polleux, N. Pinna, M. Antonietti and M. Niederberger, Adv. Mater., 2004, 16, 436–439
[40] Dinh, C. T., Nguyen, T. D., Kleitz, F., & Do, T. O. (2009). Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS nano, 3(11), 3737-3743.
[41] W. Hu, L. Li, G. Li, C. Tang and L. Sun, Cryst. Growth Des., 2009, 9, 3671–3676
[42] EDRO, NASA, Earth’s Energy Budget
[43] EPIA Global market outlook for photovoltaics 2013 - 2017
[44] Wikipedia-Solar: http://en.wikipedia.org/wiki/Solar_energy
[45] Gratzel, M., & Liska, P. (1990). U.S. Patent No. 4,927,721. Washington, DC: U.S. Patent and Trademark Office.
[46] Meteonorm: http://meteonorm.com/en/support/distributors
[47] Priambodo, P. S., Sukoco, D., Purnomo, W., Sudibyo, H., & Hartanto, D. (2013). Electric Energy Management and Engineering in Solar Cell System.
[48] PVeducation.org: http://pveducation.org/
[49] Wikipedia- Portal:電子學/特色設計: http://zh.wikipedia.org/zh-tw/Portal:%E9%9B%BB%E5%AD%90%E5%AD%B8/%E7%89%B9%E8%89%B2%E8%A8%AD%E8%A8%88
[50] Pelley, J. (2005). Solar cells that harness infrared light. Environmental science & technology, 39(7), 151A-152A.
[51] Kawasaki, H., Yonezawa, T., Watanabe, T., & Arakawa, R. (2007). Platinum nanoflowers for surface-assisted laser desorption/ionization mass spectrometry of biomolecules. The Journal of Physical Chemistry C, 111(44), 16278-16283.
[52] Becquerel, A. E. (1839). Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques. CR Acad. Sci, 9, 145-149.
[53] Becquerel, A. E. (1839). Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques. CR Acad. Sci, 9, 145-149.
[54] Wikipedia- Cyclic voltammetry: http://en.wikipedia.org/wiki/Cyclic_voltammetry
[55] Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153.
[56] Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical reviews, 110(11), 6595-6663.
[57] Hirose, F., Kuribayashi, K., Suzuki, T., Narita, Y., Kimura, Y., & Niwano, M. (2008). UV treatment effect on TiO2 electrodes in dye-sensitized solar cells with N719 sensitizer investigated by infrared absorption spectroscopy.Electrochemical and Solid-State Letters, 11(7), A109-A111.
[58] Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153.
[59] Hsieh, T. L., Chen, H. W., Kung, C. W., Wang, C. C., Vittal, R., & Ho, K. C. (2012). A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode. Journal of Materials Chemistry, 22(12), 5550-5559.
[60] Agilent Technologies: http://www.home.agilent.com/agilent/home.jspx?cc=TW&lc=cht
[61] 楊斯閔(2014),二氧化鈦光電極結構對可撓式染料敏化太陽能電池元件效率之影響,碩士論文,清華大學工程與系統科學系
[62] 許博雅(2014),可撓式ITO/PEN半固態染敏化太陽能電池之電極特性與製程研究,碩士論文,清華大學工程與系統科學系
[63] Longo, C., & De Paoli, M. A. (2003). Dye-sensitized solar cells: a successful combination of materials. Journal of the Brazilian Chemical Society, 14(6), 898-901.
[64] Lee, Y. L., Chen, C. L., Chong, L. W., Chen, C. H., Liu, Y. F., & Chi, C. F. (2010). A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells. Electrochemistry Communications,12(11), 1662-1665.