研究生: |
莊承霖 Zhuang, Cheng-Lin |
---|---|
論文名稱: |
分量最佳化之梯度搜尋架構 A Gradient-based Framework for Quantile-based Simulation Optimization |
指導教授: |
張國浩
Chang, Kuo-Hao |
口試委員: |
吳建瑋
Chien-Wei Wu 楊朝龍 Chao-Lung Yang 張國浩 Kuo-Hao Chang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 分量迴歸 、實驗設計 、因子篩選 、假設檢定 、模擬最佳化 |
外文關鍵詞: | Quantile Regression, Design of Experiments, Factor Screening, Hypothesis Testing, Simulation Optimization |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
模擬最佳化是一種利用一系列模擬的資訊找出系統中最佳的方案的解決之道,在個人電腦發達的時代下受到了廣泛的注意並且已運作在許多實務問題上。然而,典型的模擬最佳化方法是將問題視為一個隨機系統並以期望值作為績效衡量指標,少有以分量做為績效衡量指標的研究。本研究提出一個梯度搜尋架構,gradient-based framework for quantile-based simulation optimization (GBQS)來解決以分量為績效衡量指標的模擬最佳化問題。GBQS是以STRONG-S為基礎並且作修改,使之得以解決更高維度的問題,過程中運用了大量的統計方法如實驗設計、分量迴歸、因子篩選及假設檢定來提高求解效率及控制求解的品質,在最後的數值實驗及一個實務問題也獲得了不錯的表現,驗證了GBQS在各種情況下都有著高度的適應性。
Simulation optimization is one kind of optimization methods aimed to find the best solution in a simulated stochastic system. Especially in PC-era, simulation optimization has been attracting a lot of attention, and adopted in many practical problems. However, classical simulation optimization methods focused on expectation-based problems; seldom researches considered quantile-based problems. In this thesis, a gradient-based framework for quantile-based simulated optimization (GBQS) has been proposed. GBQS is based on the framework of STRONG-S, and modified it to fit the quantile-based case. GBQS is designed to solve not only lower dimensional problems but also higher ones. For efficiency and controlling solution qualification purpose, GBQS uses a good deal of statistical techniques such as design of experiments, quantile regression, factor screening, and hypothesis testing. GBQS is verified as a highly adaptable method because it has good performance on many situations by testing for several numerical experimental problems and a practical problem.
Banks, J. (1998). Handbook of Simulation. John Wiley and Sons.
Barton, R. R., & Ivey Jr, J. S. (1996). Nelder-Mead simplex modifications for simulation optimization. Management Science, 42(7):954-973.
Barton, R. R., & Meckesheimer, M. (2006). Metamodel-based simulation optimization. Handbooks in operations research and management science, 13:535-574.
Bassett, G. W., & Koenker, R. W. (1986). Strong consistency of regression quantiles and related empirical processes. Econometric Theory, 2(2):191-201.
Batur, D., & Choobineh, F. (2010). A quantile-based approach to system selection. European Journal of Operational Research, 202(3), 764-772.
Box, G. E., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society, 13(1):1-45.
Chang, K. H., Hong, L. J., & Wan, H. (2013). Stochastic trust-region response-surface method (STRONG)-a new response-surface framework for simulation optimization. INFORMS Journal on Computing, 25(2):230-243.
Chang, K. H., Li, M. K., & Wan, H. (2014). Combining strong with screening designs for large-scale simulation optimization. IIE Transactions, 46:301-312.
Chen, N., & Zhou, S. (2010). Simulation-based estimation of cycle time using quantile regression. IIE Transactions, 43(3), 176-191.
Conn, A. R., Gould, N. I., & Toint, P. L. (2000). Trust Region Methods. Siam.
Fu, M. C. (2002). Optimization for simulation: theory vs. practice. INFORMS
Journal on Computing, 14:192–227.
Fu, M. C. (2006). Gradient estimation. Handbooks in operations research and management science, 13:575-616.
Kleijnen, J. P. (2008). Design and Analysis of Simulation Experiments. Springer.
Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 33-50.
Koenker, R. (2005). Quantile Regression. Cambridge university press.
Kunter, M. H., J. Neter, C. J. Nachtsheim, and W. Li. (2004). Applied Linear Statistical Models 5th International edition., McGraw-Hill Education.
Montgomery, D. C. (2009). Design and Analysis of Experiments. John Wiley & Sons.
Moré, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing unconstrained optimization software. ACM Transactions on Mathematical Software,7(1):17-41.
Neddermeijer, H. G., van Oortmarssen, G. J., Piersma, N., & Dekker, R. (2000). A framework for response surface methodology for simulation optimization. In Proceedings of the 32nd conference on Winter simulation, 129-136. Society for Computer Simulation International.
Nicolai, R. P., Dekker, R., Piersma, N., & van Oortmarssen, G. J. (2004). Automated response surface methodology for stochastic optimization models with unknown variance. In Proceedings of the 36th conference on Winter simulation, 491-499. Winter Simulation Conference.
Parzen, M. I., Wei, L. J., & Ying, Z. (1994). A resampling method based on pivotal estimating functions. Biometrika, 81(2):341-350.
Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, 400-407.
Shen, H., & Wan, H. (2009). Controlled sequential factorial design for simulation factor screening. European Journal of Operational Research, 198(2):511-519.
Shen, H., Wan, H., & Sanchez, S. M. (2010). A hybrid method for simulation factor screening. Naval Research Logistics (NRL), 57(1):45-57.
Spall, J. C. (2003). Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. John Wiley & Sons.
Staudte, R. G., & Sheather, S. J. (1990). Robust Estimation and Testing. John Wiley & Sons
Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE Transactions, 36(11):1067-1081.
Tukey, J.W. (1960). A survey of sampling from contaminated distributions., Contributions toProbability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, 448–485.
Wan, H., Ankenman, B. E., & Nelson, B. L. (2010). Improving the efficiency and efficacy of controlled sequential bifurcation for simulation factor screening. INFORMS Journal on Computing, 22(3):482-492.
Wilcox, R. R., Erceg-Hurn, D. M., Clark, F., & Carlson, M. (2013). Comparing two independent groups via the lower and upper quantiles. Journal of Statistical Computation and Simulation, 1-9.
Wright, S. J., & Nocedal, J. (1999). Numerical Optimization. Springer.
Yin, G. G., & Kushner, H. J. (2003). Stochastic Approximation and Recursive Algorithms and Applications. Springer.