簡易檢索 / 詳目顯示

研究生: 林政漢
論文名稱: Pt-SBT-HfO2-Si MFIS 鐵電薄膜電容結構之研究
指導教授: 胡塵滌
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 114
中文關鍵詞: 鐵電記憶體SBTMFIS介面層HfO2
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文共分為兩部分,第一部分探討以不同厚度HfO2作為鐵電材料SBT與Si間的擴散阻絕層,對MFIS鐵電薄膜電容結構的影響。實驗發現薄膜厚度與後續熱處理會對HfO2結晶特性與擴散阻絕能力有明顯影響。鍍覆HfO2時,所有試片均會在HfO2/Si間產生介面層(IL),且經後續熱處理IL明顯增厚。經計算後IL介電常數約為5.67,在MFIS結構佔去不可忽視的跨壓。SIMS分析顯示三組厚度的HfO2試片均無法阻擋Si擴散進入SBT,且HfO2的Hf亦均會擴散進入SBT。儘管如此,HfO2仍具有相當高的介電常數,好的介面特性與低漏電流。鍍覆在不同厚度HfO2上的SBT皆具有良好結晶性與均勻晶粒結構,使MFIS鐵電薄膜電容具有相當大的記憶視窗/外加電壓比,非常適合低壓下操作。本研究證實了HfO2是1T-FeRAM中最好的擴散阻絕層之一。

    第二部分利用鈦酸鋇塊材與硝酸銀水溶液,探討在鐵電材料表面上光化學反應的發生。實驗結果顯示高能光源可激發鐵電材料內電子電洞對,激發出的載子將被特定的鐵電域(+c Domain)吸引,使奈米銀粒子選擇性地在鈦酸鋇表面析出。本實驗證實銀粒子分佈與鐵電域結構間的相互關係,並成功整合奈米電極與鐵電元件。印證了鐵電微影技術的可行性。


    目錄 第一章 緒論……………………………………………………………...1 1-1 前言……………………………………………………………….....1 1-2 高介電材料的興起……………………………………………….....1 1-3 鐵電記憶體的優點……………………………………………….....2 1-4 鐵電記憶體材料的選擇………………………………………….....2 1-5 鐵電材料的表面微影(Lithography) ……………………………......3 1-6 研究方向……………………………………………………….........4 第二章 文獻回顧………………………………………………………...5 2-1 高介電材料…………..………………………………………….…..5 2-1-1高介電材料的發展契機…….…………………………………5 2-1-2高介電材料的選擇……………………………….……………5 2-1-3 HfO2作為高介電材料的優勢………………………………….7 2-1-4鍍覆HfO2所遭遇的問題-低介電常數介面層的生成……….7 2-1-4-1 IL組成研究……………………………………….……….8 2-1-4-2 IL的生成與成長原因……………………………………..9 2-1-4-3 IL對電容結構的影響與改善方法………………………..9 2-2鐵電材料…………..………………………………………….…....10 2-2-1 鐵電性……..………………………………………….……...10 2-2-2 鐵電材料的結構與特性…………………………….……….11 2-2-3 鐵電薄膜的可靠度…………………………….…………….13 2-2-4 鐵電薄膜的鍍覆…………………………….……………….14 2-2-4-1配方溶液的研製與調配……………….…………………15 2-2-4-2薄膜在基板的被覆…………….…………………………15 2-2-4-3低溫焦化處理…………….………………………………16 2-2-4-4高溫結晶與緻密化處理.…………………………………16 2-2-5 SBT鐵電薄膜之相變化……….……………………………..17 2-3鐵電記憶體………..………………………………………….……18 2-3-1 歷史……..………………………………………….………...18 2-3-2 鐵電薄膜於記憶體元件上的應用…………………………..18 2-3-3 鐵電材料應用在記憶體上的問題…………………………..20 2-3-4 MFIS結構的興起與特性…………………………………….21 2-4鐵電微影技術…..………………………………………….………23 2-4-1 原理…..………………………………………….…………...23 2-4-2 應用…..………………………………………….…………...24 2-5實驗目的..………………………………………….………………25 第三章 實驗程序……………………………………………………….37 3-1-0 第一部分實驗簡介……………………………………………..37 3-1-1 基板準備………………………………………………………..37 3-1-2 擴散阻絕層製備………………………………………………..37 3-1-3 SBT鐵電薄膜製備……………………………………………...38 3-1-3-1 SBT溶液之TG/DTA分析…………………………….…..38 3-1-3-2有機金屬裂解法製備SBT薄膜的流程……………………39 3-1-4 白金電極製備…………………………………………………..39 3-1-4-1底電極的製備………………………………………………39 3-1-4-2頂電極的製備………………………………………………40 3-1-5 試片代號表示…………………………………………………..41 3-1-6 MFIS結構性質之量測分析…………………………………….41 3-1-6-1電性量測……………………………………………………41 3-1-6-2物性分析……………………………………………………43 3-2-0 第二部分實驗簡介……………………………………………..47 3-2-1 BaTiO3塊材準備………………………………………………..47 3-2-2 AgNO3水溶液製備……………………………………………...47 3-2-3 實驗配置………………………………………………………..47 3-2-4 表面影像分析…………………………………………………..47 第四章 結果與討論-第一部分………………………………………...55 4-0簡介………………………………………………………….……..55 4-1 HfO2結晶特性隨薄膜厚度,以及後續熱處理的變化……………55 4-2 HfO2厚度及熱處理條件對SBT薄膜結晶特性的影響………….58 4-3 HfO2厚度對SBT薄膜表面形貌的影響………………………….59 4-4厚度與熱處理條件對HfO2及SBT薄膜表面粗糙度的影響……..60 4-5 TEM介面探測與介面層(IL)分析……………………………...…61 4-5-1 HfO2/IL/Si橫截面(Cross Section)TEM觀察………………...61 4-5-2 SBT/HfO2/IL/Si橫截面(Cross Section)TEM觀察………..…63 4-6不同HfO2厚度及熱處理時間對SBT薄膜之縱深成分分析……65 4-7 HfO2薄膜與介面層(IL)分析……………………………………...66 4-8 Pt/HfO2/Si(MIS)結構電性量測…………………………………....67 4-8-1電容-電壓曲線圖……………………………………………..67 4-8-2負值記憶視窗與電壓關係……………………………………68 4-9 Pt/SBT/HfO2/Si(MFIS)結構電性量測……………………………68 4-9-1外加電壓在各層間的分佈……………………………………68 4-9-2電容電壓曲線圖量測…………………………………………69 4-9-3記憶視窗與外加電壓關係……………………………………70 4-9-4 MFIS結構理想可達的記憶視窗值與實際量測值之比較….73 4-9-5漏電流密度量測………………………………………………74 4-9-6時效(Retention)量測…………………………………………..74 4-10介面層對MFIS結構的影響…………………………………..…76 第五章 結果與討論-第二部分………………………………...………98 5-0 簡介………………………………………………………………..98 5-1 AFM表面起伏分析…………………………………………...…98 5-2 試片表面鐵電域結構(Domain Structure)與光化學反應探討…..99 5-3 實驗結果後續應用………………………………………………100結論………………………………………………………………...…105 參考文獻……………………………………………………………….107 表目錄 表2-1 高積集度積體電路元件中的高介電材料所應滿足的條件…..26 表4-1 各試片SBT薄膜的介電常數與各層所佔跨壓………………..77 表4-2 各試片在施加6V閘極電壓時實際測得之記憶視窗與理想記憶視窗值…………………………………………………………..78 圖目錄 圖2-1 鈣鈦礦結構內的鐵電域圖,AA’為90度域壁,BB’為180度域壁…………………………………………………………….27 圖2-2 鐵電材料極化(P)與外加電場(E)的關係……………..……….28 圖2-3 鈣鈦礦結構…………………….................................................29 圖2-4 SrBi2Ta2O9的層狀鈣鈦礦結構……………………………….30 圖2-5 浸鍍的過程……………………………………….……………31 圖2-6 旋鍍的過程………………………………………………….…31 圖 2-7 SBT內三種相之XRD繞射峰圖形…………………..……...32 圖2-8 鐵電薄膜用於DRAM之操作示意圖……………...................33 圖2-9一般線性介電值(a)與非線性介電值(b)……………………….33 圖2-10 1T-1C type 鐵電記憶體操作原理……………………............34 圖2-11 FET-type鐵電記憶體操作原理示意圖………………....……35 圖2-12鈦酸鋇能帶圖,(a)居禮溫度以上,(b)居禮溫度以下,C+ Domain (c)居禮溫度以下,C- Domain………….…………...36 圖3-1 DTA原理示意圖…….…………………………………..……49 圖3-2 SBT溶液之TG分析………………………………………….50 圖3-3 SBT溶液之DTA分析………………………………………..50 圖3-4 SBT薄膜電容結構……………………………..……………..51 圖3-5 實驗步驟流程圖………………………………….……………52 圖3-6 記憶視窗(a)順時針,鐵電效應(b)逆時針,電荷陷阱效應….53 圖3-7 第二部分實驗示意圖,其中BaTiO3、O-Ring與石英片的厚度 分別為1.2mm、2mm與2mm………………..……….………54 圖4-1 不同厚度HfO2剛鍍覆在Si基板上之XRD繞射圖……..…..79 圖4-2 不同厚度HfO2經過後續熱處理後之XRD繞射圖………..79 圖4-3 不同厚度HfO2分別在後續熱處理前後之Plan View 與選區電子繞射圖…………………………………………………...80 圖4-4 不同厚度HfO2試片在後續熱處理後之選區電子繞射圖, m=monoclinic,t=tetragonal…………………………............81 圖4-5 (a)(A+SBT)1m、(b)(B+SBT)1m、(c)(C+SBT)1m之XRD繞射圖,SBT薄膜熱處理條件為RTA 750℃ 1min…….……82 圖4-6 (a)(A+SBT)3m、(b)(B+SBT)3m、(c)(C+SBT)3m之XRD繞射圖,SBT薄膜熱處理條件為RTA 750℃ 3min………….82 圖4-7 SBT在不同厚度HfO2上經過結晶熱處理後之FESEM表面形貌…………………………………………………………...83 圖4-8 SBT在不同熱處理條件下的剖面形貌……………………..84 圖4-9 HfO2薄膜在不同厚度及後續熱處理前後之表面AFM影像 ………………………………………………………………..85 圖4-10 SBT薄膜在不同HfO2厚度及熱處理條件下之表面AFM影像……………………………………………………………..86 圖4-11 不同厚度HfO2在不同熱處理條件下之表面方均根粗糙度 (a)HfO2剛鍍製、(b)HfO2 1000℃ 30sec後續熱處理、(c)SBT 750℃ 1min結晶熱處理、(d)SBT 750℃ 3min結晶熱處理 ……………………………………………………..……….87 圖4-12 不同厚度HfO2分別在後續熱處理前後之TEM截面圖 (a)熱處理前、(b)熱處理後………………….…………….88 圖4-13 SBT於不同厚度HfO2與不同結晶熱處理時間下之TEM截面圖………………………………………………………...89 圖4-14 HfO2與IL的厚度在不同熱處理條件下比較圖,(a)HfO2剛鍍製、(b)HfO2後續熱處理後、(c)SBT結晶熱處理一分鐘 (d)SBT結晶熱處理三分鐘………………………………..90 圖4-15 IL在不同熱處理條件下之厚度,(a)HfO2剛鍍製、(b)HfO2後續熱處理後、(c)SBT結晶熱處理一分鐘、(d)SBT結晶熱處理三分鐘………………...................................................90 圖4-16 (a)(A+SBT)1m 與 (b)(A+SBT)3m之TEM截面影像......91 圖4-17 (a)(A+SBT)1m 、(b)(A+SBT)3m 與(c)(B+SBT)1m 之縱深成分分析圖………………………………………………...92 圖4-18 EOT與HfO2厚度之線性分析圖…………………………93 圖 4-19 不同厚度HfO2下之MIS結構C-V loop………………....94 圖4-20 不同厚度HfO2之記憶視窗-電壓關係圖………………...95 圖4-21 SBT於不同厚度HfO2下,其MFIS結構之電容-電壓關係曲線圖………………………...................................................96 圖4-22 SBT於不同厚度HfO2下,其MFIS結構之記憶視窗-電壓關係曲線圖,(a)(A+SBT)1m 、(b)(B+SBT)1m 、(c)(C+SBT)1m (d)(A+SBT)3m 、(e)(B+SBT)3m 、(f)(C+SBT)3m …….96 圖4-23 SBT於不同厚度HfO2下,其MFIS結構之漏電流密度-電壓關係曲線圖….......................................................................97 圖4-24 SBT於不同厚度HfO2下,其MFIS結構之時效量測圖 ……………………………………………………………...97 圖5-1 光還原反應後的BaTiO3表面影像圖。(b)與(c)分別為(a)與(b)圖內方框所示之高解析度影像…………………………..101 圖5-2 分別在水與丙酮中做超音波震盪20min後的BaTiO3表面影像。其中(b)為(a)圖中方框的高解析度影像…………….102 圖5-3 鐵電材料Domain結構,(a)180o a-a Domain、(b) 180o c-c Domain、(c) 90o a-c Domain、(d)90o a-a Domain……….103 圖5-4 BaTiO3單一晶粒內的90o Domain 與180o Domain…….103 圖5-5 BaTiO3表面AFM影像與方框內鐵電域結構示意圖…..104

    1. Bing-Yue Tsui and Hsiu-Wei Chang, “Formation of interfacial layer during reactive sputtering of hafnium oxide”, J. Appl. Phys. Vol. 93, pp. 10119-10124 (2003)
    2. Hyoungsub Kim, Paul C. Mclntyre, and Krishna C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition”, Appl. Phys. Lett. Vol. 82, pp. 106-108 (2003)
    3. 吳啟明, “The Study of (BaSr)TiO3 Thin Films Deposited on LaNiO3 Electrode by rf Magnetron Sputtering for DRAMs Applications”, 清華大學, 博士論文(1997)
    4. Moonju Cho, Jaehoo Park, Hong Bae Park, Cheol Seong Hwang, Jaehack Jeong, and Kwang Soo Hyun, “Chemical interaction between atomic-layer-deposited HfO2 thin films and the Si substrate”, Appl. Phys. Lett. Vol. 81, pp. 334-336 (2002)
    5. Ching-Chich Leu, Chao-Hsin Chien, Ming-Jui Yang, Ming-Che Yang, Tiao-Yuan Huang, Hung-Tao Lin, and Chen-Ti Hu, “Effects of ultrathin tantalum seeding layers on sol-gel-derived SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol. 80, pp. 4600-4602 (2002)
    6. Woong-Chul Shin, Kyu-Jeong Choi, and Soon-Gil Yoon, “Low-temperature crystallization of SrBi2Ta2O9 thin films with Bi2O3 interfacial layers by liquid-delivery metalorganic chemical vapor deposition”, J. Mater. Res. Vol. 17, No. 1, pp. 26-30 (2002)
    7. Yasuyukiito, Maho Ushikubo, Seiichi Yokoyama, Hironori Matsunaga, Tsutomu Atsuki, Tadashi Yonezawa, and Katsumi Ogi, “New low temperature processing of sol-gel SrBi2Ta2O9 thin films”, Integ. Ferro. Vol.14, pp. 123-131(1997)
    8. Tze Chiun, Tingkai Li, Xubai Zhang, and Seshu B. Desu, “The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 thin film”, J. Mater. Res. Vol. 12, No. 6, pp. 1569-1575 (1997)
    9. S. Bhattacharyya, Apurba Laha, and S. B. Krupanidhi, “Impact of Sr content on dielectric and electrical properties of pulsed laser ablated SrBi2Ta2O9 thin films”, J. Appl. Phys. Vol. 92, pp. 1056-1061 (2002)
    10. 呂正傑, “Effects of adhesion layers on the microstructure and characteristics of SrBi2Ta2O9 ferroelectric memories”, 清華大學, 博士論文 (2004)
    11. B. Yu, H. Wang, C. Riccobene, Q.Xiang, and M.R. Lin, Symp. on VLSI Tech. Dig. P90 (2000)
    12. B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, M. Zeitzoff, and J.C. S. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs”, IEEE Trans. Electron Devices Vol. 46, pp. 1537-1544 (1999)
    13. M.-H. Cho, D.-H. Ko, Y. G. Choi, K.Jeong, I. W. Lyo, D. Y. Noh, H. J. Kim, and C. N. Whang, “Structural and electrical characteristics of Y2O3 films grown on oxidized Si (100) surface” J. Vac. Sci. Technol. A 19, pp. 192-199 (2001)
    14. B. H. Lee, Y. J. K. Zawadzki, W.-J. Qi, and J. Lee, “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon”, Appl. Phys. Lett. Vol. 74, pp. 3143-3145 (1999)
    15. V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation”, J. Appl. Phys. Vol. 89, pp. 3256-3269 (2001)
    16. M.-H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition”, Appl. Phys. Lett. Vol. 81, pp. 472-474 (2002)
    17. Jack C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics”, IEEE EDS vanguard series of independent short courses
    18. S. M. Hu, “Stress-related problems in silicon technology”, J. Appl. Phys. Vol. 70 (6), pp. R53-R80 (1991)
    19. T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition on amorphous Al2O3 thin films on Si (100)”, Appl. Phys. Lett. Vol. 75, pp. 4001-4003 (1999)
    20. H. F. Luan, S. J. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roverts, and D. L. Kwong, Tech. Dig.- Int. Electron Devices Meet. Vol. 1999, p141 (1999)
    21. K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon”, J. Mater. Res. Vol. 11, pp. 2757-2776 (1996)
    22. B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and D. L. Kwong, Tech. Dig.-Int. Electron Devices Meet. Vol. 1999, p133 (1999)
    23. I. Barin, “Thermochemical Data of Pure Substances”, VCH, Weinheim (1989)
    24. J. Park, B. K. Park, M. Cho, C. S. Hwang, K. Oh, and D. Y. Yang, “Chemical Vapor Deposition of HfO2 Thin Films Using a Novel Carbon-Free Precursor”, J. Electrochemical. Soci. Vol. 149(1), pp. G89-G94 (2002)
    25. J.-C. Lee, S.-J. Oh, M. Cho, C. S. Hwang, and R. Jung, “Chemical structure of the interface in ultrathin HfO2/Si films”, Appl. Phys. Lett. Vol. 84, pp. 1305-1307 (2004)
    26. J. Q. He, A. Teren, C. L. Jia, P. Ehrhart, K. Urban, R. Waser, and R. H. Wang, “Microstructure and interfaces of HfO2 thin films grown on silicon substrates”, J. Crys. Grow. Vol. 262, pp. 295-303 (2004)
    27. S. J. Wang, P. C. Lim, A. C. H. Huan, C. L. Liu, J. W. Chai, S. Y. Chow, J. S. Pan, Q. Li, and C. K. Ong, “Reaction of SiO2 with hafnium oxide in low oxygen pressure”, Appl. Phys. Lett. Vol. 82, pp. 2047-2049 (2003)
    28. K.-J. Choi, J.-B. Park, and S.-G. Yoon, “Control of the Interfacial Layer Thickness in Hafnium Oxide Gate Dielectric Grown by PECVD”, J. Electrochemical. Soci. Vol. 150(4), pp. F75-F77 (2003)
    29. C. Essary, J. M. Howard, V. Craciun, D. Craciun, and R. K. Singh, “Kinetics of interfacial layer formation during deposition of HfO2 on silicon”, Thin Solid Films Vol. 450, pp. 111-113 (2004)

    30. K. Choi, H. Temkin, H. Harris, S. Gangopadhyay, L. Xie, and M. White, “Initial growth of interfacial oxide during deposition of HfO2 on silicon”, App. Phys. Lett. Vol. 85, pp. 215-217 (2004)
    31. J. Lu, J. Aarik, J. Sundqvist, K. Kukli, A. Harsta, and J.-O. Carlsson, “Analytical TEM characterization of the interfacial layer between ALD HfO2 film and silicon substrate”, J. Crys. Grow. Vol. 273, pp. 510-514 (2005)
    32. G. He, M. Liu, L. Q. Zhu, M. Chang, Q. Fang, and L. D. Zhang, “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100)”, Surf. Scie. Vol. 576, pp. 67-75 (2005)
    33. B. H. Lee, L. Kang, R. Nieh, W.-J. Qi, and Jack C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing”, Appl. Phys. Lett. Vol. 76, pp. 1926-1928 (2000)
    34. S. Van Elshocht, M. Caymax, S. De Gendt, T. Conard, J. Petry, L. Date, D. Pique, and M. M. Heyns, “Composition and Growth Kinetics of the Interfacial Layer for MOCVD HfO2 Layers on Si substrates”, J. Electrochemical. Soci. Vol. 151, pp. F77-F80 (2004)
    35. S. Ferrari and G. Scarel, “Oxygen diffusion in atomic layer deposited ZrO2 and HfO2 thin films on Si (100)”, J. Appl. Phys. Vol. 96, pp. 144-149 (2004)
    36. P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si (100)”, J. Appl. Phys. Vol. 91, pp. 4353-4363 (2002)
    37. 錢維烈, 鐵電物理學, 科學出版社 (1996)
    38. X. Xu, “Ferroelectric Materials and their application”, North Holland, Netherlands (1991)
    39. 鄭晃忠, 史德智, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期 (1999)
    40. 陳銘森, ”鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究”, 清華大學, 博士論文 (1996)
    41. Ismunandar and B. J. Kennedy, “Structure of ABi2Nb2O9(A=Sr, Ba): Refinement of Powder Neutron Diffraction Data”, J. Solid State Chem. Vol. 126, pp. 135-141 (1996)
    42. A. Gonzalez, R. Jimenez, J. Mendiola, C. Alemany, and M. L. Calzada, “Ultrathin ferroelectric strontium bismuth tantalate films”, Appl. Phys. Lett. Vol. 81, pp. 2599-2601 (2002)
    43. K. Amanuma, T. Hase, and Y. Miyasaka, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol. 66, pp. 221-223 (1995)
    44. Y. Shinada, A. Azuma, Keisaku, S. Chaya, N. Moriwaki, and T. Otsuki, “Retention Characteristics of a Ferroelectric Memory based on SrBi2(Ta,Nb)2O9”, Jpn. J. Appl. Phys. Vol. 36, pp. 5912-5916 (1997)
    45. H. N. Al-Shareef, D. Dimos, W. L. Warren, and B. A. Tuttle, “Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films ”, J. Appl. Phys. Vol. 80, pp. 4573-4577 (1996)
    46. 陳三元, “強介電薄膜之液相化學製作法”, 工業材料, p108 (1995)
    47. J. S. Lee, H. J. Kwon, S. J. Hyun, and T. W. Noh, “Structure characterization of the low-temperature phase in Sr-Bi-Ta-O films”, Appl. Phys. Lett. Vol. 74, pp. 2690-2692 (1999)
    48. M. A. Rodriguez, T. J. Boyla, B. A. Hernandez, C. D. Buchheit, and M. O. Eatough, “Formation of SrBi2Ta2O9: Part1. Evidence of a bismuth-deficient pyrochlore phase”, J. Mater. Res. Vol. 11, pp. 2282-2287 (1996)
    49. C.-H. Lu, B.-K. Fang, and C.-Y. Wen, “Structure Identification and Electrical Properties of the New Pyrochlore Phase in the Sr-Bi-Ta-Ti-O system”, Jpn. J. Appl. Vol. 39, pp. 5573-5576 (2000)
    50. I. Koiwa, Y. Okada, J. Mita, A. Hashimoto, and Y. Sawada, “Role of Excess Bi in SrBi2Ta2O9 Thin Film Prepared Using Chemical Liquid Deposition and Sol-Gel Method”, Jpn. J. Appl. Phys. Vol.36, pp. 5904-5907 (1997)
    51. T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa, and A. Hashimoto, “Phase Transition in Ferroelectric SrBi2Ta2O9 Thin Films with Change of Heat-treatment Temperature”, Jpn. J. Appl. Phys. Vol. 37, pp. 597-601 (1998)
    52. T. J. Boyle, C. D. Buchheit, M. A. Rodriguez, H. N. Al-Shareef, and B. A. Hernandez, “Formation of SrBi2Ta2O9: Part 1. Synthesis and characterization of a novel sol-gel solution for production of ferroelectric SrBi2Ta2O9 thin film”, J. Mater. Res. Vol. 11, pp. 2274-2281 (1996)
    53. S. Y. Wu, IEEE Trans. Electron Devices ED21 (1974)
    54. 彭成鑑, “強介電陶瓷材料在動態隨機記憶體上的應用”, 工業材料, p107 (1995)
    55. 呂正傑, 詹世雄, “鐵電記憶體簡介”, 毫微米通訊第五卷第四期
    56. J. L. Giocondi and G. S. Rohrer, “Photochemical Reduction and Oxidation Reactions on Barium Titanate Surfaces”, Mat. Res. Soc. Symp. Proc. Vol. 654, pp. AA7.4.1-AA7.4.10 (2001)
    57. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang and S. Dunn, “Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures”, Nano Lett. Vol. 2, No. 6, pp. 589-593 (2002)
    58. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, R. Shao, and J. H. Ferris, “Ferroelectric Lithography of Multicomponent Nanostructures”, Adv. Mater. Vol. 16, No. 9-10, pp. 795-799 (2004)
    59. R. C. Garvie, “Stabilization of the Tetragonal Structure in Zirconia Microcrystals”, J. Phys. Chem. Vol. 82, pp. 218-224 (1978)
    60.A. R. Teren, P. Ehrhart, R. Waser, J. Q. He, C. L. Jia, M. Schumacher,
    J. Lindner, P. K. Baumann, T. J. Leedham, S. R. Rushworth and A. C.
    Jones, “Comparison of hafnium precursors for the MOCVD of HfO2 for gate dielectric applications”, Integrated Ferroelectrics Vol. 57, pp. 1163-1173 (2003)
    61.A. Gruverman and M. Tanaka, “Polarization retention in SrBi2Ta2O9 thin films investigated at nanoscale”, J. Appl. Phys. Vol. 89, pp. 1836-1843 (2001)
    62.H. Okino, T. Ida, H. Ebihara, H. Yamada, K. Matsushige and T. Yamamoto, “Domain Orientation Imaging of PbTiO3 Single Crystals by Vertical and Lateral Piezoresponse Force Microscopy ”, Jpn. Appl. Phys. Lett. Vol. 40, pp. 5828-5832 (2001)
    63. A. J. Moulson and J. M. Herbert, “Electroceramics”, p75 (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE