簡易檢索 / 詳目顯示

研究生: 鄭丞良
Cheng-Liang Cheng
論文名稱: 鋰二次電池之多孔交聯型高分子電解質的製備與熱關閉行為之研究
Preparation of Porous, Chemically Crosslinked PVdF-HFP Based Polymer Electrolytes for Lithium Secondary Batteries and Study of Their Thermal Shutdown Behaviors
指導教授: 萬其超
Chi-Chao Wan
王詠雲
Yung-Yun Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 146
中文關鍵詞: 鋰電池高分子電解質交聯熱關閉
外文關鍵詞: lithium batteies, polymer electrolyte, crosslinking, thermal shutdown
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出新的高分子電解質製備方法,使其能同時具備多孔結構與化學交聯結構。實驗中以聚氟乙烯共聚合物 (poly(vinylidene fluoride-co- hexafluoropropylene; PVdF-HFP) 作為高分子主體,聚乙二醇 (polyethylene glycol; PEG)為塑化劑,聚乙二醇丙烯酸甲酯 (polyethylene glycol dimethacrylate; PEGDMA) 則為交聯寡合物,高分子薄膜經由溶劑控制揮發法與PEGDMA交聯反應之後而得。除了以微差掃描卡計 (differential scanning calorimeter; DSC),傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectroscopy; FTIR) 以及掃描式電子顯微術 (scanning electron microscopy; SEM) 鑑定高分子電解質的基本性質與表面形貌外。亦利用交流阻抗頻譜分析(AC impedance analysis)、線性掃描伏安法(linear sweep voltammetry; LSV)以及循環伏安法 (cyclic voltammetry; CV) 分析高分子電解質的電化學特性,包括離子導電度、電化學穩定度和熱關閉行為。此外,我們亦將此高分子電解質組裝成全電池MCMB/LiCoO2 系統,進行電池性能 (循環能力 (cycleability) 和快速放電能力 (rate capability))與安全性 (針穿實驗 (nail penetration) 和過充電實驗 (overcharge))的測試。
    實驗結果顯示,在高分子電解質尚未製備多孔結構時,交聯後的PEGDMA形成3D的交聯網絡結構,可補強高分子電解質的機械性質。但此緻密的結構會阻礙電解液滲透進入高分子電解質中,造成鋰離子的傳導困難。如此一來,離子導電度與快速放電能力則會大幅下降,而不足以應用於可攜式電子產品。
    因此,為了提昇上述交聯型電解質的離子導電度,我們嘗試以溶劑控制揮發法製備高分子電解質,使其亦能同時具有多孔結構而吸收更多電解液來彌補因交聯結構所造成的損失。如此一來,此多孔交聯型高分子電解質則可同時具備高機械性質與高離子導電度。例如:組成為PVdF-HFP/PEG/ PEGDMA (5/3/2) 的電解質膜具有52.5MPa的拉伸模數,87.2 %的拉伸長度。而選用1M LiPF6/EC-DEC 為電解液時,此高分子電解質的吸液量可達98.2%,常溫離子導電度亦提昇至1.06 × 10-3 Scm-1。此外,此高分子電解質可與鋰金屬形成穩定的界面層,並且電化學穩定電位亦可高達5 V。
    在電池性能方面,含此高分子電解質的MCMB/LiCoO2 鈕釦型電池在1C放電下可具有91 %的電容量,甚至在2C的快速放電速率情形下,亦能保持大約80 %的電容量。而此電池在50次循環測試後亦保有85 %的電容量。此結果和商用隔離膜Celgard® 2300相較之下,顯示此高分子電解質亦具有快速放電能力與循環能力。
    在熱關閉行為的研究中,以PVdF-HFP/PEGDMA為對象。在高分子電解質的成膜過程中,以成膜溫度與成膜時間來控制電解質膜的交聯程度。使高分子電解質中,一部分的PEGDMA寡合物先進行交聯,以提供電解質的機械性質。而其餘部分的PEGDMA寡合物尚未交聯,故在正常操作溫度下,可作為PVdF-HFP的塑化劑,然而一旦當溫度上升至120 oC時,此寡合物受熱而進行交聯反應,形成緻密的網絡結構,進而阻礙鋰離子的傳導,造成阻抗的增加,因而保護電池不致於發生電池燃燒與熱失控的現象。結果顯示上述高分子電解質阻抗提昇效果雖比商用隔離膜差,而只有約10倍左右。然而,此電解質可在120 oC 進行熱關閉機制,並在高達180 oC 下仍然維持高阻抗,如此,可有助於安全性的提昇。在安全測試實驗中,以此高分子電解質所組裝成之全電池均通過針穿實驗與過充實驗。


    This dissertation presents a new process to prepare microporous, chemically-crosslinked polymer electrolytes based on poly(vinylidene fluoride- hexafluoropropylene) (PVdF-HFP) copolymer as a polymer matrix, polyethylene glycol (PEG) as a plasticizer, and polyethylene glycol dimethacrylate (PEGDMA) as a chemical crosslinking oligomer. The blend electrolytes are prepared by a combination of solvent controlled evaporation and thermal polymerization of PEGDMA. The characteristics of the blend electrolyte membranes were carried out by differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The electrochemical properties of the blend electrolytes including ionic conductivity, electrochemical stability and shutdown stability were characterized by AC impedance analysis, linear sweep voltammetry (LSV) and cyclic voltammetry (CV). In addition, the MCMB/LiCoO2 cells using the so-obtained polymer electrolytes were performed practically by battery performance tests including cyclability and rate capability, and safety tests containing nail penetration and overcharge.
    The results revealed that the blend electrolytes without porous structure show improved mechanical strength due to reinforced effect by PEGDMA network. However, such chemical crosslinking structure resulted in a dense interpenetrating network (IPN) structure that hindered the liquid electrolyte to penetrate into PVdF-HFP matrix and thus deteriorated the transport of lithium ion. Consequently, the ambient ionic conductivity and high-rate performance were considered to be insufficient for portable electronics applications.
    In order to improve the ionic conductivity of the foresaid polymer electrolyte, an attempt was made to create microporous structure inside the chemically crosslinked polymer matrix by solvent controlled evaporation. Therefore, the blend polymer electrolyte with microporous structure compensated for the decrease in electrolyte uptake and ionic conductivity due to a dense chemical crosslinking structure. Hence, this blend polymer electrolyte exhibits both good mechanical strength enhanced by PEGDMA network, and high ionic conductivity improved by microporous structure. For example, the PVdF-HFP/ PEG/PEGDMA (5/3/2) blend membrane shows a tensile modulus of 52.5 MPa, elongation of 87.2 %. In the presence of 1M LiPF6/EC-DEC, this blend electrolyte exhibits electrolyte uptake of 98.2 % and ambient ionic conductivity of 1.06 × 10-3 Scm-1. In addition, it also shows stable interfacial resistance with lithium metal and electrochemical stability up to 5.0 V vs. Li/Li+.
    The MCMB/LiCoO2 coin type cell using the resulted polymer electrolyte can deliver about 91% of its C/2 capacity at a 1C rate, and still deliver about 80 % of its C/2 capacity even at a high 2C rate. The cell also retained about 85 % of the initial capacity after 50 cycles. These results indicate that the resulted polymer electrolyte shows good rate capability and acceptable cycleability when compared with that using a commercial separator, such as Celgard® 2300.
    Finally, the thermal shutdown behaviors of the PVdF-HFP/PEGDMA blend electrolytes were investigated. The crosslinking degree of the blend electrolyte was carefully controlled by casting temperature and casting time during fime-forming. Consequently, one part of the PEGDMA oligomers, which were crosslinked and formed a network, supported the mechanical strength of the said electrolytes, and the other part of the PEGDMA oligomers, which were un-crosslinked, served as plasticizer for PVdF-HFP copolymer under normal situation. However, when temperature rose above 120 oC, the un-crosslinked PEGDMA oligomers started to react and formed network structure in the said electrolytes. Then, such dense network structure hindered the mobility of lithium ion, resulting in increased impedance of the cell and the cell was protected from self-heating and thermal runaway. The results reveal that the resulted polymer electrolyte shows increased impedance by approximately one order of magnitude, which is lower than that of commercial polyolefin separator; however, it exhibits shutdown temperature at 120 oC earlier than that of polyolefin separator, and maintains the thermal stability until 180 oC. Thus, the cells using the so-obtained blend electrolytes can pass the safety tests including nail penetration and overcharge.

    Abstract Ⅰ Chinese Abstract Ⅳ Acknowledgements Ⅵ Table of Contents Ⅶ List of Figures ⅩⅠ List of Table ⅩⅦ List of Symbols ⅩⅧ Chapter 1 Introduction and Literature Review 1 1.1 Introduction of Lithium Secondary Battery 1 1.2 Review of Polymer Electrolytes 11 1.2.1 Classification and History of Polymer Electrolytes 11 1.2.2 Conduction Mechanism in Solid Polymer Electrolytes 18 1.2.3 Ion Transport in Gelled Polymer Electrolytes 23 1.3 Safety Issues of Lithium batteries 30 1.3.1 Abuse Behavior of Lithium Batteries 30 1.3.2 Reactions in Lithium Secondary Batteries 34 1.3.3 Thermal Shutdown Behaviors in Lithium Secondary Batteries 43 1.4 Motivation and Purpose of the Study 46 1.5 References 49 Chapter 2 PVdF-HFP Based Polymer Electrolytes Reinforced by PEGDMA Network 57 2.1 Introduction 57 2.2 Experimental 61 2.2.1 Preparation of Chemically Crosslinked Gel Polymer Electrolytes and Electrodes 61 2.2.2 Mechanical Measurements 62 2.2.3 Electrical Measurements 62 2.3 Results and Discussion 64 2.3.1 Mechanical Properties 64 2.3.2 Electrochemical Properties 65 2.3.3 Battery Performance 74 2.4 Conclusions 77 2.5 References 78 Chapter 3 Preparation of Porous, Chemically-Crosslinked PVdF-HFP Based Gel Polymer Electrolytes 82 3.1 Introduction 82 3.2 Experimental 84 3.2.1 Preparation of Gel Polymer Membranes and Electrodes 84 3.2.2 Morphology and Electrolyte Uptake 85 3.2.3 Electrochemical and Mechanical Measurements 85 3.2.4 Cell testing 86 3.3 Results and Discussion 87 3.3.1 Characterization 87 3.3.2 Electrochemical Properties 90 3.3.3 Mechanical Properties 100 3.3.4 Cell Performance 103 3.4 Conclusions 106 3.5 References 107 Chapter 4 Thermal Shutdown Behaviors of PVdF-HFP Based Polymer Electrolytes Comprising Heat Sensitive Crosslinkable Oligomers 110 4.1 Introduction 110 4.2 Experimental 113 4.2.1 Preparation of PVdF-HFP Based Gel Electrolytes Comprising Crosslinkable Oligomers 113 4.2.2 FTIR and DSC Analysis 113 4.2.3 Ionic Conductivity and Mechanical Measurements 114 4.2.4 Fabrication of the Prismatic and Card Cell 114 4.2.5 Safety Tests 115 4.3 Results and Discussion 116 4.3.1 Characterization of Polymer Electrolytes 116 4.3.2 Ionic Conductivity 120 4.3.3 Mechanical Properties 124 4.3.4 Thermal Shutdown Behaviors 129 4.3.5 Battery Safety Tests 137 4.4 Conclusions 138 4.5 References 139 Chapter 5 Conclusions 143 About Author 145 List of Figures Fig. 1-1 Energy density of various rechargeable batteries 2 Fig. 1-2 Schematic diagram of the electrochemical process of Li-ion cell 5 Fig. 1-3 Brief evolution of lithium batteries 10 Fig. 1-4 Structure of PEO, viewed parallel and normal to the axis of the helix. (The white circles represent oxygen atoms, the gray circles represent carbon atoms and the black circles represent hydrogen atoms) 18 Fig. 1-5 Representation of cation motion in a polymer electrolyte assisted by polymer chain motion only and taking account of ionic cluster contributions 20 Fig.1-6 An evolution process of the ionic species in a LiClO4 − organic solvent (plasticizer) solution: (a) at very low concentration, the salt is completely dissolved and there are only solvated lithium ions; (b) when the concentration is raised solvent-separated ion pairs appear in the solution; (c) further increase of salt concentration leads to ion pairs and the ionic atmosphere is damaged; (d) in concentrated solution, ionic aggregates appear and dominate the solution while the concentration of the free lithium ions drops dramatically 24 Fig.1-7 Association of the ionic species in a plasticizer removed LiClO4 – PAN system; (a) the lithium ions are associated with the nitrile groups of the PAN molecules. The coordination number could be as large as four; (b) when the salt content is further increased, the extra ions will turn to form ion pairs, [Li+ ] 27 Fig. 1-8 Association of ionic species in a plasticized LiClO4 – PAN system. (a) when a plasticizer is added, the Li+ – PAN associates and the ion pairs are decoupled due to the salvation and strong competition effects of the plasticizer for the lithium ions; (b) and (c) when more plasticizer is added, more and more ion associates are decupled; a gel polymer electrolyte with high ionic conductivity is obtained; (d) if a plasticizer with very strong competitive capability is added, the Li+ – PAN associates are decoupled and solvent-separated ion pairs tends to be formed. The appearance of the ion pairs will reduce the concentration of free charge carriers 27 Fig. 1-9 7Li NMR spectrum of PAN-EC-PC-DMSO-LiClO4 at room temperature (frequency: 34.964MHz) 28 Fig. 1-10 Common UL marks 31 Fig. 1-11 DSC and TGA profiles of negative electrode material from the 550mAh commercial Li-ion cell, with open-circuit potential at 4.15V: (A) washed sample, (B)unwashed sample, and (C) unwashed sample with lithium plating 35 Fig. 1-12 DSC profiles of intercalated graphite electrodes in (a) 1M LiClO4 in EC/DEC (1/1 v/v) and (b) 1M LiPF6 in EC/DEC (1/1 v/v). The scan is carried out between 35 and 250 °C with a scan rate 5 °C min-1 36 Fig. 1-13 DSC trace of the reactions occurring in a fully lithiated MCMB 25-28 graphite plastic anode containing electrolyte or not 37 Fig. 1-14 DSC at 10 °C/min on fully lithiated graphite electrode (a) without electrolyte, after rinsing ---dotted line, (b) with electrolyte — full line 38 Fig. 1-15 DSC profiles of 1M LiPF6/EC+DEC (1:1), 1M LiPF6/EC+DMC (1:1), 1M LiPF6/PC+DEC (1:1), and 1M LiPF6/PC+DMC (1:1) electrolytes with/without water 39 Fig. 1-16 DSC and TG of positive material from 550mAh commercial Li-ion cell, with open-circuit potential at 4.15 V; (A) washed sample and (B) unwashed sample 41 Fig. 1-17 Open-circuit potential of the cathode in a fully-charged three-electrode battery 42 Fig. 1-18 Behavior of the enthalpy and decomposition temperature of a battery at different OCP for the LixCoO2 electrode 42 Fig. 1-19 Impedance vs. temperature curves for cells containing polyolefin separators: PP, PE and PP/PE/PP trilayer 45 Fig. 1-20 DSC thermograms of polyolefin separators containing PP, PE and PP/PE/PP trilayer 45 Fig. 2-1 Test cell for ionic conductivity 63 Fig. 2-2 Tensile modulus of PVdF-HFP/PEG/PEGDMA polymer membranes 66 Fig. 2-3 Elongation of PVdF-HFP/PEG/PEGDMA polymer membranes 67 Fig. 2-4 Schematic illustration of IPN structure in PVdF-HFP/PEG/PEGDMA blend membrane 68 Fig. 2-5 Ionic conductivity of PVdF/PEGDMA polymer membranes as a function of PEGDMA content 69 Fig. 2-6 Liquid electrolytes uptake of PVdF/PEGDMA polymer membranes as a function of PEGDMA content 71 Fig. 2-7 Cyclic voltammetry of various solution systems 72 Fig. 2-8 Cyclic voltammetry of PVdF-HFP/PEG/PEGDMA (5/3/2) blend electrolytes containing 1M LiClO4 in EC/DEC (1/1 v/v) 73 Fig. 2-9 Cycle life test of MCMB/LiCoO2 cell containing PVdF-HFP/PEG/ PEGDMA (5/3/2) blend electrolyte in the presence of 1M LiPF6 in EC/DEC (1/1 v/v) 75 Fig. 2-10 Rate capability of MCMB/LiCoO2 cell containing PVdF-HFP/PEG/ PEGDMA (5/3/2) blend electrolyte in the presence of 1M LiPF6 in EC/DEC (1/1 v/v) 76 Fig. 3-1 SEM images of surface morphology of chemically crosslinked PVdF-HFP/PEG/PEGDMA (5/3/2) gel polymer electrolytes prepared by (a) natural evaporation, (b) vacuum evaporation and (c) controlled evaporation, respectively 88 Fig. 3-2 The liquid electrolyte uptake as function of the composition of PVdF-HFP/PEG/PEGDMA polymer membranes 88 Fig. 3-3 The ionic conductivity of PVdF-HFP/PEG/PEGDMA gel polymer electrolytes containing 1M LiPF6/EC-DEC 91 Fig. 3-4 Wetting time of the PVdF-HFP/PEG/PEGDMA (5/3/2) blend electrolytes 95 Fig. 3-5 Arrhenius plot of the ionic conductivity of PVdF-HFP/PEG/PEGDMA gel polymer electrolytes containing 1M LiPF6/EC-DEC 96 Fig. 3-6 The AC impedance spectra of Li|PVdF-HFP/PEG/PEGDMA (5/3/2)|Li cell in the presence of 1M LiPF6/EC-DEC 98 Fig. 3-7 The electrochemical stability window of SS|polymer electrolytes|Li cells in the presence of 1M LiPF6 in EC/DEC (1/1 v/v) 99 Fig. 3-8 Tensile modulus of the PVdF-HFP/PEG/PEGDMA blend membranes 101 Fig. 3-9 Tensile elongation of PVdF-HFP/PEG/PEGDMA blend membranes 102 Fig. 3-10 Rate capability of MCMB|(porous chemically crosslinked gel polymer electrolyte)|LiCoO2 cell with controlled evaporation and activated by 1M LiPF6 in EC/DEC (1/1 v/v) at room temperature 104 Fig. 3-11 Cyclability of MCMB|(porous chemically crosslinked gel polymer electrolyte)|LiCoO2 cell with controlled evaporation and activated by 1M LiPF6 in EC/DEC (1/1 v/v) at a C/2 rate at room temperature 105 Fig. 4-1 FTIR spectra of PVdF-HFP/PEGDMA prepared at different casting temperature and casting time 118 Fig. 4-2 The influence of casting temperature and casting time on crosslinking degree of PEGDMA in PVdF-HFP/PEGDMA membranes 119 Fig. 4-3 The influence of casting temperature and casting time on the ionic conductivity of the PVdF-HFP/PEGDMA electrolytes containing 1M LiPF6 in EC/DEC (1/1 v/v) 122 Fig. 4-4 Correlation between ionic conductivity and crosslinking degree 123 Fig. 4-5 Tensile tests of the PVdF-HFP/PEGDMA membranes prepared at 130 oC for different casting time 126 Fig. 4-6 Influence of casting temperature and casting time on the tensile modulus of PVdF-HFP/PEGDMA membranes 127 Fig. 4-7 Correlation between tensile modulus and crosslinking degree 128 Fig. 4-8 DSC thermograms of PVdF-HFP copolymer and polyolefin separators 131 Fig. 4-9 Impedance of polyolefin separators (PP/PE/PP and PE) and PVdF-HFP/PEGDMA electrolyte at different temperature 132 Fig. 4-10 Impedance of PVdF/PEGDMA electrolytes with or without initiator in 1M LiPF6 EC/DEC (1/1 v/v) under different temperature 135 Fig. 4-11 Correlation between relative increase of impedance increase and initial crosslinking degree of PVdF-HFP/PEGDMA electrolyte (The impedance at 100 oC as reference) 136 List of Tables Table 1-1 Manufacturers of rechargeable lithium batteries in Taiwan 3 Table 1-2 Various types of lithium batteries 3 Table 1-3 Reactions in Li-ion cell 6 Table 1-4 Physical properties of solvents for lithium secondary batteries 8 Table 1-5 Fundamental properties of the separators and the polymer hosts commonly used in lithium secondary batteries 12 Table 1-6 Various types of SPE 14 Table 1-7 Ionic conductivity of various gel polymer electrolytes at room temperature 16 Table 1-8 Main safety tests proposed for lithium batteries 32 Table 1-9 Procedures and requirements of common safety test 33 Table 1-10 DSC thermal behavior of some positive materials from DSC compared to O2 release temperature measured by DTA +MS (10°C /min) 40 Table 1-11 Energy of main reactions in lithium battery 43 Table 3-1 Characteristics of blend electrolyte membranes as a function of composition 94

    [1] R. J. Brodd, “Trends and advances in battery markets and technology”, in Proceedings of 2001 (5th ) Taipei Battery Forum, Apr. (2001)
    [2] Y. S. Jan and J. M. Chen, “Current development of lithium battery at ITRI”, in Proceedings of 2002 (6th ) Taipei Battery Forum, Apr. (2002)
    [3] C. A. Vincent, “Lithium batteries: a 50-year perspective, 1959-2009”, Solid State Ionics, 134, 159-167 (2000)
    [4] Y. Nishi, “Lithium ion secondary batteries: past 10 years and the future”, J. Power Source, 100, 101-106 (2001)
    [5] S. Megahed and B. Scrosati, “Rechargeable nonaqueous batteries”, J. Power Source, 51, 79-104 (1994)
    [6] J. R. Dahn, A. K. Sleigh, H. Shi, B. M. Way, W. J. Weydanz, J. N. Reimers, Q. Zhong and U. von Sacken, Ch.1 in Lithium Batteries. New Materials, Developments and Perspectives, G. Pistoia, Ed., Elsevier, Amsterdam (1994),
    [7] E. Peled, “The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems − The solid electrolyte interphase model”, J. Electrochem. Soc. 126, 2047-2051 (1979)
    [8] J. Barthel and H. J. Gores, in Handbook of Battery Materials, J. O. Besenhard, Ed., Wiley-Vch, Weinheim, 457-497 (1999)
    [9] L. Bretherick, “Solvated metal perchlorates”, Chem. And Eng. News, 68, 4 (1990)
    [10] R. Jasinsky and S. Carroll, “Thermal stability of a propylene carbonate electrolyte”, J. Electrochem. Soc., 117, 218-219 (1970)
    [11] G. H. Newman, R. W. Francis, L. H. Gaines and B. M. L. Rao, “Hazard investigations of LiClO4/Dioxolane Electrolyte”, J. Electrochem. Soc., 127, 2025-2027 (1980)
    [12] J. Y. Song, Y. Y. Wang and C. C. Wan, “Conductivity study of porous plasticized polymer electrolytes based on poly(vinylidene fluoride) - A comparison with polypropylene separators”, J. Electrochem. Soc., 147, 3219-3225 (2000)
    [13] M. Gauthier, A. Bélanger, B. Kapfer, G. Vassort and M. Armand, in Polymer Electrolyte Reviews-2, J. R. MacCallum and C. A. Vincent, Eds., Elsevier, London (1989)
    [14] D. E. Fenton, J. M. Parker and P. V. Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 14, 589 (1973)
    [15] M. B. Armand, J. M. Chabagno, M. Duclot, in Proceedings of the 2nd International Conference on Solid Electrolytes, St. Andrews, Scotland, September 20-22 (1978)
    [16] W. H. Meyer, “Polymer electrolytes for lithium-ion batteries”, Advanced Materials, 10, 439-448 (1998)
    [17] F. M. Gray, in Polymer Electrolytes, The Royal Society of Chemistry, UK (1997)
    [18] M. Alamgir and K. M. Abraham, Ch.3 in Lithium Batteries. New Materials, Developments and Perspectives, G. Pistoia, Ed., Elsevier, Amsterdam (1994),
    [19] K. Murata, S. Izuchi and Y. Yoshihisa, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 45, 1501-1508 (2000)
    [20] K. Murata, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 40, 2177-2184 (1995)
    [21] G. Feuillade and Ph. Perche, “Ion-conductive macromolecular gels and membranes for solid lithium cells”, J. Applied electrochem., 5, 63-69 (1975)
    [22] K. M. Abraham and M. Alamgir, “Ambient-temperature rechargeable polymer electrolyte batteries”, J. Power Source, 43, 195-208 (1993)
    [23] K. M. Abraham and M. Alamgir, “Room-temperature polymer electrolytes and batteries based on them”, Solid State Ionics, 70, 20-26 (1994)
    [24] G. Nagasubramanian, A. I. Attia and G. Halpert, “A polyacrylonitrile-based gelled electrolyte electrochemical kinetic studies”, J. Applied Electrochem., 24, 298-302 (1994)
    [25] F. Croce, B. Scrosati and G. Mariotto, “Electrochemical and spectroscopic study of the transport properties of composite polymer electrolytes”, Chemistry of Materials, 4, 1134-1136 (1992)
    [26] F. Croce and B. Scrosati, “Ambient-temperature lithium polymer rocking-chair batteries”, J. Electrochem. Soc., 141, 1405-1408 (1994)
    [27] G. B. Appetecchi, F. Croce and B. Scrosati, “High-performance electrolyte membranes for plastic lithium batteries”, J. Power Sources, 66, 77-82 (1997)
    [28] B. Scrosati, in Lithium Ion Batteries-Fundamentals and Performance, M. Wakihara and O. Yamamoto Eds, Wiley-Vch, Tokyo (1998)
    [29] A. S. Gozdz, J. M. Tarascon, C. N. Schmutz, P. C. Warren, O. S. Gebizlioglu and F. K. Shokoohi, Fall Meeting of The Electrochemical Soceity, Abstract No. 117, Extended Abstracts, Vol. 94-2, Miami, Florida, October 9-14 (1994)
    [30] A. S. Gozdz, C. N. Schmutz and J. M. Tarascon, “Rechargeable lithium intercalation battery with hybrid polymeric electrolyte”, U. S. Patent No. 5,296,318 (1994)
    [31] A. S. Gozdz, C. N. Schmutz, J. M. Tarascon and P. C. Warren, “Polymeric electrolytic cell separator membrane”, U. S. Patent No. 5,418,091 (1995)
    [32] A. S. Gozdz, J. M. Tarascon and P. C. Warren, “Electrolyte activatable lithium-ion rechargeable battery cell”, U. S. Patent No. 5,460,904 (1995)
    [33] A. S. Gozdz, C. N. Schmutz, J. M. Tarascon and P. C. Warren, “Lithium secondary battery extraction method”, U. S. Patent No. 5,540,741 (1996)
    [34] T. Michot, A. Nishimoto and M. Watanabe, “Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer”, Electrochim. Acta, 45, 1347-1360 (2000)
    [35] X. Andrieu and L. Josset, “Bifunctional electrode for an electrochemical cell or a supercapacitor and a method of producing it”, U. S. Patent No. 5,811,205 (1998)
    [36] H. Kataoka, Y. Saito, T. Sakai, E. Quartarone and P. Mustarelli, “Conduction mechanisms of PVDF-type gel polymer electrolytes of lithium prepared by a phase inversion process”, J. Phys. Chem. B, 104, 11460-11464 (2000)
    [37] A. Magistris, P. Mustarelli, E. Quartarone, P. Piaggio and A. Bottino, “Poly(vinylidenefluoride)-based porous polymer electrolytes”, Electrochim. Acta, 46, 1635-1639 (2001)
    [38] A. Magistris, P. Mustarelli, F. Parazzoli, E. Quartarone, P. Piaggio and A. Bottino, “Structure, porosity and conductivity of PVdF films for polymer electrolytes”, J. Power Sources, 97-98, 657-660 (2001)
    [39] F. Boudin, X. Andrieu, C. Jehoulet, I. I. Olsen, “ Microporous PVdF gel for lithium-ion batteries”, J. Power Source, 81-82, 804-807 (1999)
    [40] A. Du. Pasquier, P. C. Warren, D. Culver, A. S. Gozdz, G. G. Amatucci and J. M. Tarascon, “Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process”, Solid State Ionics, 135, 249-257 (2000)
    [41] H. Huang and S. L. Wunder, “Preparation of microporous PVDF based polymer electrolytes”, J. Power Sources, 97-98, 649-653 (2001)
    [42] C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno and P. Rigaud, “Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts”, Solid State Ionics, 11, 91-95 (1983)
    [43] C. A. Angell, “Recent developments in fast ion transport in glassy and amorphous materials”, Solid State Ionics, 18-19, 72-88 (1985)
    [44] M. A. Ratner and D. F. Shriver, “Ion transport in solvent-free polymers”, Chem. Rev., 88, 109-124 (1988)
    [45] M. A. Ratner, Ch.7 in Polymer Electrolyte Reviews-1, J. R. MacCallum and C. A. Vincent, Eds., Elsevier, London (1989)
    [46] F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane and M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(acrylonitrile)”, Chem. Mater., 5, 1268-1272 (1993)
    [47] P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane and M. Salomon, “Sodium-23 NMR and complex impedance studies of gel electrolytes based on poly(acrylonitrile)”, Solid State Ionics., 73, 119-126 (1994)
    [48] P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane and M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(methyl methacrylate)”, Electrochim. Acta, 40, 2137-2141 (1995)
    [49] Z. Wang, B. Huang, H. Huang, L. Chen, R. Xue and F. Wang, “Infrared spectroscopic study of the dual plasticizer γ-butyrolactone and sulpholane”, Solid State Ionics, 85, 159-162 (1996)
    [50] D. Ostrovskii, A. Brodin , L. Torell, G. B. Appetecchi and B. Scrosati, “Molecular and ionic interactions in poly(acrylonitrile)- and poly (methylmetacrylate)- based gel electrolytes”, J. Chem. Phys., 109, 7618- 7624 (1998)
    [51] Z. Wang, B. Huang, R. Xue, X. Huang and L. Chen, “Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes”, Solid State Ionics, 121, 141-156 (1999)
    [52] E. Cazzanelli, G. Mariotto, G. B. Appetecchi, F. Croce, and B. Scrosati, “Study of ion-molecule interaction in poly(methyl methacrylate) based gel electrolytes by Raman spectroscopy”, Electrochim. Acta, 40, 2379-2382 (1995)
    [53] Z. Wang, B. Huang, Z. Lu, S. Wang, R. Xue and L. Chen, “Vibrational spectroscopic studies of interactions between LiClO4 and the plasticizer dimethylformamide”, Solid State Ionics, 92, 265-271 (1996)
    [54] Z. Wang, B. Huang, Z. Lu, S. Wang, R. Xue, L. Chen and F. Wang, “The vibrational spectroscopic study of polyacrylonitrile-based electrolytes”, Spectrochim. Acta Part A, 52, 691-703 (1996)
    [55] Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang and L. Chen, “Competition between the plasticizer and polymer on associating with Li+ ions in polyacrylonitrile-based electrolytes”, J. Electrochem. Soc., 144, 778-786 (1997)
    [56] B. Huang, Z. Wang, L. Chen, R. Xue and F. Wang, “The mechanism of lithium ion transport in polyacrylonitrile based polymer electrolytes”, Solid State Ionics, 91, 279-284 (1996)
    [57] J. Y. Song, Y. Y. Wang and C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries”, J. Power Sources, 77, 183-197 (1999)
    [58] A. Du Pasquier, F. Disma, T. Bowmer, A. S. Gozdz, G. Amatucci and J-M. Tarascon, “Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries”, J. Electrochem. Soc., 145, 472-477 (1998)
    [59] H. Maleki, G. Deng, A. Anani and J. Howard, “Thermal stability studies of Li-ion cells and components”, J. Electrochem. Soc., 146, 3224-3229 (1999)
    [60] M. N. Richard and J. R. Dahn, “Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte I. Experimental”, J. Electrochem. Soc., 146, 2068-2077 (1999)
    [61] Ph. Biensan, B. Simon, J. P. Peres, A. de Guibert, M. Broussely, J. M. Bodet and F. Perton, “On safety of lithium-ion cells”, J. Power Sources, 81-82, 906-912 (1999)
    [62] S. Tobishima, K. Takei, Y. Sakurai and J. Yamaki, “Lithium ion cell safety”, J. Power Sources, 90, 188-195 (2000)
    [63] J. Yamaki, H. Takatsuji, T. Kawamura and M. Egashira, “Thermal stability of graphite anode with electrolyte in lithium-ion cells”, Solid State Ionics, 148, 241-245 (2002)
    [64] E. P. Roth and D. H. Doughty, “Thermal abuse performance of high-power 18650 Li-ion cells”, J. Power Sources, 128, 308-318 (2004)
    [65] H. H. Lee, C. C. Wan and Y. Y. Wang, “Thermal stability of the solid electrolyte interface on carbon electrodes of lithium batteries”, J. Electrochem. Soc., 151, A542-A547 (2004)
    [66] R. Spotnitz and J. Franklin, “Abuse behavior of high-power, lithium-ion cells”, J. Power Sources, 113, 81-100 (2003)
    [67] S. Tobishima and J. Yamaki, “A consideration of lithium cell safety”, J. Power Sources, 81-82, 882-886 (1999)
    [68] Y. F. Chen and J. W. Evans, “Thermal analysis of lithium polymer electrolyte batteries by a two dimensional model-thermal behaviour and design optimization”, Electochim. Acta, 39, 517-526 (1994)
    [69] Underwriters Laboratories Inc., “Standard for lithium batteries”, UL 1642, third edition (1995)
    [70] Underwriters Laboratories Inc., “Standard for household and commercial batteries”, UL 2054 (1997)
    [71] S. Tobishima, Y. Sakurai and J. Yamaki, “Safety characteristics of rechargeable lithium metal cells”, J. Power Sources , 68, 455-458 (1997)
    [72] K. Kitoh and H. Nemoto, “100Wh large size Li-ion batteries and safety tests”, J. Power Sources , 81-82, 887-890 (1999)
    [73] M. S. Wu, P. C. J. Chiang, J. C. Lin and Y. S. Jan, “Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests-short-circuit tests”, Electrochim. Acta, 49, 1803-1812 (2004)
    [74] S. Al Hallaj, H. Maleki, J. S. Hong and J. R. Selman, “Thermal modeling and design considerations of lithium-ion batteries”, J. Power Sources , 83, 1-8 (1999)
    [75] J. T. Lundquist, C. B. Lundsager, N. I. Palmer and H. J. Troffkin, “Battery separator”, U. S. Patent No.4,650,730 (1987)
    [76] J. T. Lundquist, C. B. Lundsager, N. I. Palmer and H. J. Troffkin, “Battery separator”, U. S. Patent No. 4,731,304 (1988)
    [77] H. T. Taskier, S. M. Mullins, E A. Langford and R. J. Fleming, “Battery separator with integral thermal fuse”, U. S. Patent No. 4,973,532 (1990)
    [78] W. C. Yu and M. W. Geiger, “Shutdown, bilayer battery separator”, U. S. Patent No. 5,565,281 (1996)
    [79] H. Kuruchi, T. Akazawa and A. Kawabata, “Porous multi-layer film”, U. S. Patent No. 5,691,047 (1997)
    [80] R. M. Spotnitz, “Trilayer battery separator”, U. S. Patent No. 6,180,280 (2001)
    [81] R. W. Call, P. C. Cook, S. E. Hux, K. V. Nguyen and W. C. Yu, “Structurally stable fusible battery separators and method of making same”, U. S. Patent No. 6,346,350 (2002)
    [82] F. C. Laman, M. A. Gee and J. Denovan, “Impedance studies for separators in rechargeable lithium batteries”, J. Electrochem. Soc., 140, L51-L53 (1993)
    [83] G. Venugopal, J. Moore, J. Howard and S. Pendalwar, “Characterization of microporous separators for lithium-ion batteries”, J. Power Sources , 77, 34-41 (1999)
    [84] G. Venugopal, “Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries”, J. Power Sources , 101, 231-237 (2001)
    [85] R. A. M. Hikmet and M. P. J. Peeters, “A study of the effect of the polymer network and the solvent on the ion conductivity in gels”, Solid State Ionics, 126, 25-39 (1999)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE