研究生: |
鄭丞良 Cheng-Liang Cheng |
---|---|
論文名稱: |
鋰二次電池之多孔交聯型高分子電解質的製備與熱關閉行為之研究 Preparation of Porous, Chemically Crosslinked PVdF-HFP Based Polymer Electrolytes for Lithium Secondary Batteries and Study of Their Thermal Shutdown Behaviors |
指導教授: |
萬其超
Chi-Chao Wan 王詠雲 Yung-Yun Wang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 146 |
中文關鍵詞: | 鋰電池 、高分子電解質 、交聯 、熱關閉 |
外文關鍵詞: | lithium batteies, polymer electrolyte, crosslinking, thermal shutdown |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出新的高分子電解質製備方法,使其能同時具備多孔結構與化學交聯結構。實驗中以聚氟乙烯共聚合物 (poly(vinylidene fluoride-co- hexafluoropropylene; PVdF-HFP) 作為高分子主體,聚乙二醇 (polyethylene glycol; PEG)為塑化劑,聚乙二醇丙烯酸甲酯 (polyethylene glycol dimethacrylate; PEGDMA) 則為交聯寡合物,高分子薄膜經由溶劑控制揮發法與PEGDMA交聯反應之後而得。除了以微差掃描卡計 (differential scanning calorimeter; DSC),傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectroscopy; FTIR) 以及掃描式電子顯微術 (scanning electron microscopy; SEM) 鑑定高分子電解質的基本性質與表面形貌外。亦利用交流阻抗頻譜分析(AC impedance analysis)、線性掃描伏安法(linear sweep voltammetry; LSV)以及循環伏安法 (cyclic voltammetry; CV) 分析高分子電解質的電化學特性,包括離子導電度、電化學穩定度和熱關閉行為。此外,我們亦將此高分子電解質組裝成全電池MCMB/LiCoO2 系統,進行電池性能 (循環能力 (cycleability) 和快速放電能力 (rate capability))與安全性 (針穿實驗 (nail penetration) 和過充電實驗 (overcharge))的測試。
實驗結果顯示,在高分子電解質尚未製備多孔結構時,交聯後的PEGDMA形成3D的交聯網絡結構,可補強高分子電解質的機械性質。但此緻密的結構會阻礙電解液滲透進入高分子電解質中,造成鋰離子的傳導困難。如此一來,離子導電度與快速放電能力則會大幅下降,而不足以應用於可攜式電子產品。
因此,為了提昇上述交聯型電解質的離子導電度,我們嘗試以溶劑控制揮發法製備高分子電解質,使其亦能同時具有多孔結構而吸收更多電解液來彌補因交聯結構所造成的損失。如此一來,此多孔交聯型高分子電解質則可同時具備高機械性質與高離子導電度。例如:組成為PVdF-HFP/PEG/ PEGDMA (5/3/2) 的電解質膜具有52.5MPa的拉伸模數,87.2 %的拉伸長度。而選用1M LiPF6/EC-DEC 為電解液時,此高分子電解質的吸液量可達98.2%,常溫離子導電度亦提昇至1.06 × 10-3 Scm-1。此外,此高分子電解質可與鋰金屬形成穩定的界面層,並且電化學穩定電位亦可高達5 V。
在電池性能方面,含此高分子電解質的MCMB/LiCoO2 鈕釦型電池在1C放電下可具有91 %的電容量,甚至在2C的快速放電速率情形下,亦能保持大約80 %的電容量。而此電池在50次循環測試後亦保有85 %的電容量。此結果和商用隔離膜Celgard® 2300相較之下,顯示此高分子電解質亦具有快速放電能力與循環能力。
在熱關閉行為的研究中,以PVdF-HFP/PEGDMA為對象。在高分子電解質的成膜過程中,以成膜溫度與成膜時間來控制電解質膜的交聯程度。使高分子電解質中,一部分的PEGDMA寡合物先進行交聯,以提供電解質的機械性質。而其餘部分的PEGDMA寡合物尚未交聯,故在正常操作溫度下,可作為PVdF-HFP的塑化劑,然而一旦當溫度上升至120 oC時,此寡合物受熱而進行交聯反應,形成緻密的網絡結構,進而阻礙鋰離子的傳導,造成阻抗的增加,因而保護電池不致於發生電池燃燒與熱失控的現象。結果顯示上述高分子電解質阻抗提昇效果雖比商用隔離膜差,而只有約10倍左右。然而,此電解質可在120 oC 進行熱關閉機制,並在高達180 oC 下仍然維持高阻抗,如此,可有助於安全性的提昇。在安全測試實驗中,以此高分子電解質所組裝成之全電池均通過針穿實驗與過充實驗。
This dissertation presents a new process to prepare microporous, chemically-crosslinked polymer electrolytes based on poly(vinylidene fluoride- hexafluoropropylene) (PVdF-HFP) copolymer as a polymer matrix, polyethylene glycol (PEG) as a plasticizer, and polyethylene glycol dimethacrylate (PEGDMA) as a chemical crosslinking oligomer. The blend electrolytes are prepared by a combination of solvent controlled evaporation and thermal polymerization of PEGDMA. The characteristics of the blend electrolyte membranes were carried out by differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The electrochemical properties of the blend electrolytes including ionic conductivity, electrochemical stability and shutdown stability were characterized by AC impedance analysis, linear sweep voltammetry (LSV) and cyclic voltammetry (CV). In addition, the MCMB/LiCoO2 cells using the so-obtained polymer electrolytes were performed practically by battery performance tests including cyclability and rate capability, and safety tests containing nail penetration and overcharge.
The results revealed that the blend electrolytes without porous structure show improved mechanical strength due to reinforced effect by PEGDMA network. However, such chemical crosslinking structure resulted in a dense interpenetrating network (IPN) structure that hindered the liquid electrolyte to penetrate into PVdF-HFP matrix and thus deteriorated the transport of lithium ion. Consequently, the ambient ionic conductivity and high-rate performance were considered to be insufficient for portable electronics applications.
In order to improve the ionic conductivity of the foresaid polymer electrolyte, an attempt was made to create microporous structure inside the chemically crosslinked polymer matrix by solvent controlled evaporation. Therefore, the blend polymer electrolyte with microporous structure compensated for the decrease in electrolyte uptake and ionic conductivity due to a dense chemical crosslinking structure. Hence, this blend polymer electrolyte exhibits both good mechanical strength enhanced by PEGDMA network, and high ionic conductivity improved by microporous structure. For example, the PVdF-HFP/ PEG/PEGDMA (5/3/2) blend membrane shows a tensile modulus of 52.5 MPa, elongation of 87.2 %. In the presence of 1M LiPF6/EC-DEC, this blend electrolyte exhibits electrolyte uptake of 98.2 % and ambient ionic conductivity of 1.06 × 10-3 Scm-1. In addition, it also shows stable interfacial resistance with lithium metal and electrochemical stability up to 5.0 V vs. Li/Li+.
The MCMB/LiCoO2 coin type cell using the resulted polymer electrolyte can deliver about 91% of its C/2 capacity at a 1C rate, and still deliver about 80 % of its C/2 capacity even at a high 2C rate. The cell also retained about 85 % of the initial capacity after 50 cycles. These results indicate that the resulted polymer electrolyte shows good rate capability and acceptable cycleability when compared with that using a commercial separator, such as Celgard® 2300.
Finally, the thermal shutdown behaviors of the PVdF-HFP/PEGDMA blend electrolytes were investigated. The crosslinking degree of the blend electrolyte was carefully controlled by casting temperature and casting time during fime-forming. Consequently, one part of the PEGDMA oligomers, which were crosslinked and formed a network, supported the mechanical strength of the said electrolytes, and the other part of the PEGDMA oligomers, which were un-crosslinked, served as plasticizer for PVdF-HFP copolymer under normal situation. However, when temperature rose above 120 oC, the un-crosslinked PEGDMA oligomers started to react and formed network structure in the said electrolytes. Then, such dense network structure hindered the mobility of lithium ion, resulting in increased impedance of the cell and the cell was protected from self-heating and thermal runaway. The results reveal that the resulted polymer electrolyte shows increased impedance by approximately one order of magnitude, which is lower than that of commercial polyolefin separator; however, it exhibits shutdown temperature at 120 oC earlier than that of polyolefin separator, and maintains the thermal stability until 180 oC. Thus, the cells using the so-obtained blend electrolytes can pass the safety tests including nail penetration and overcharge.
[1] R. J. Brodd, “Trends and advances in battery markets and technology”, in Proceedings of 2001 (5th ) Taipei Battery Forum, Apr. (2001)
[2] Y. S. Jan and J. M. Chen, “Current development of lithium battery at ITRI”, in Proceedings of 2002 (6th ) Taipei Battery Forum, Apr. (2002)
[3] C. A. Vincent, “Lithium batteries: a 50-year perspective, 1959-2009”, Solid State Ionics, 134, 159-167 (2000)
[4] Y. Nishi, “Lithium ion secondary batteries: past 10 years and the future”, J. Power Source, 100, 101-106 (2001)
[5] S. Megahed and B. Scrosati, “Rechargeable nonaqueous batteries”, J. Power Source, 51, 79-104 (1994)
[6] J. R. Dahn, A. K. Sleigh, H. Shi, B. M. Way, W. J. Weydanz, J. N. Reimers, Q. Zhong and U. von Sacken, Ch.1 in Lithium Batteries. New Materials, Developments and Perspectives, G. Pistoia, Ed., Elsevier, Amsterdam (1994),
[7] E. Peled, “The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems − The solid electrolyte interphase model”, J. Electrochem. Soc. 126, 2047-2051 (1979)
[8] J. Barthel and H. J. Gores, in Handbook of Battery Materials, J. O. Besenhard, Ed., Wiley-Vch, Weinheim, 457-497 (1999)
[9] L. Bretherick, “Solvated metal perchlorates”, Chem. And Eng. News, 68, 4 (1990)
[10] R. Jasinsky and S. Carroll, “Thermal stability of a propylene carbonate electrolyte”, J. Electrochem. Soc., 117, 218-219 (1970)
[11] G. H. Newman, R. W. Francis, L. H. Gaines and B. M. L. Rao, “Hazard investigations of LiClO4/Dioxolane Electrolyte”, J. Electrochem. Soc., 127, 2025-2027 (1980)
[12] J. Y. Song, Y. Y. Wang and C. C. Wan, “Conductivity study of porous plasticized polymer electrolytes based on poly(vinylidene fluoride) - A comparison with polypropylene separators”, J. Electrochem. Soc., 147, 3219-3225 (2000)
[13] M. Gauthier, A. Bélanger, B. Kapfer, G. Vassort and M. Armand, in Polymer Electrolyte Reviews-2, J. R. MacCallum and C. A. Vincent, Eds., Elsevier, London (1989)
[14] D. E. Fenton, J. M. Parker and P. V. Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 14, 589 (1973)
[15] M. B. Armand, J. M. Chabagno, M. Duclot, in Proceedings of the 2nd International Conference on Solid Electrolytes, St. Andrews, Scotland, September 20-22 (1978)
[16] W. H. Meyer, “Polymer electrolytes for lithium-ion batteries”, Advanced Materials, 10, 439-448 (1998)
[17] F. M. Gray, in Polymer Electrolytes, The Royal Society of Chemistry, UK (1997)
[18] M. Alamgir and K. M. Abraham, Ch.3 in Lithium Batteries. New Materials, Developments and Perspectives, G. Pistoia, Ed., Elsevier, Amsterdam (1994),
[19] K. Murata, S. Izuchi and Y. Yoshihisa, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 45, 1501-1508 (2000)
[20] K. Murata, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 40, 2177-2184 (1995)
[21] G. Feuillade and Ph. Perche, “Ion-conductive macromolecular gels and membranes for solid lithium cells”, J. Applied electrochem., 5, 63-69 (1975)
[22] K. M. Abraham and M. Alamgir, “Ambient-temperature rechargeable polymer electrolyte batteries”, J. Power Source, 43, 195-208 (1993)
[23] K. M. Abraham and M. Alamgir, “Room-temperature polymer electrolytes and batteries based on them”, Solid State Ionics, 70, 20-26 (1994)
[24] G. Nagasubramanian, A. I. Attia and G. Halpert, “A polyacrylonitrile-based gelled electrolyte electrochemical kinetic studies”, J. Applied Electrochem., 24, 298-302 (1994)
[25] F. Croce, B. Scrosati and G. Mariotto, “Electrochemical and spectroscopic study of the transport properties of composite polymer electrolytes”, Chemistry of Materials, 4, 1134-1136 (1992)
[26] F. Croce and B. Scrosati, “Ambient-temperature lithium polymer rocking-chair batteries”, J. Electrochem. Soc., 141, 1405-1408 (1994)
[27] G. B. Appetecchi, F. Croce and B. Scrosati, “High-performance electrolyte membranes for plastic lithium batteries”, J. Power Sources, 66, 77-82 (1997)
[28] B. Scrosati, in Lithium Ion Batteries-Fundamentals and Performance, M. Wakihara and O. Yamamoto Eds, Wiley-Vch, Tokyo (1998)
[29] A. S. Gozdz, J. M. Tarascon, C. N. Schmutz, P. C. Warren, O. S. Gebizlioglu and F. K. Shokoohi, Fall Meeting of The Electrochemical Soceity, Abstract No. 117, Extended Abstracts, Vol. 94-2, Miami, Florida, October 9-14 (1994)
[30] A. S. Gozdz, C. N. Schmutz and J. M. Tarascon, “Rechargeable lithium intercalation battery with hybrid polymeric electrolyte”, U. S. Patent No. 5,296,318 (1994)
[31] A. S. Gozdz, C. N. Schmutz, J. M. Tarascon and P. C. Warren, “Polymeric electrolytic cell separator membrane”, U. S. Patent No. 5,418,091 (1995)
[32] A. S. Gozdz, J. M. Tarascon and P. C. Warren, “Electrolyte activatable lithium-ion rechargeable battery cell”, U. S. Patent No. 5,460,904 (1995)
[33] A. S. Gozdz, C. N. Schmutz, J. M. Tarascon and P. C. Warren, “Lithium secondary battery extraction method”, U. S. Patent No. 5,540,741 (1996)
[34] T. Michot, A. Nishimoto and M. Watanabe, “Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer”, Electrochim. Acta, 45, 1347-1360 (2000)
[35] X. Andrieu and L. Josset, “Bifunctional electrode for an electrochemical cell or a supercapacitor and a method of producing it”, U. S. Patent No. 5,811,205 (1998)
[36] H. Kataoka, Y. Saito, T. Sakai, E. Quartarone and P. Mustarelli, “Conduction mechanisms of PVDF-type gel polymer electrolytes of lithium prepared by a phase inversion process”, J. Phys. Chem. B, 104, 11460-11464 (2000)
[37] A. Magistris, P. Mustarelli, E. Quartarone, P. Piaggio and A. Bottino, “Poly(vinylidenefluoride)-based porous polymer electrolytes”, Electrochim. Acta, 46, 1635-1639 (2001)
[38] A. Magistris, P. Mustarelli, F. Parazzoli, E. Quartarone, P. Piaggio and A. Bottino, “Structure, porosity and conductivity of PVdF films for polymer electrolytes”, J. Power Sources, 97-98, 657-660 (2001)
[39] F. Boudin, X. Andrieu, C. Jehoulet, I. I. Olsen, “ Microporous PVdF gel for lithium-ion batteries”, J. Power Source, 81-82, 804-807 (1999)
[40] A. Du. Pasquier, P. C. Warren, D. Culver, A. S. Gozdz, G. G. Amatucci and J. M. Tarascon, “Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process”, Solid State Ionics, 135, 249-257 (2000)
[41] H. Huang and S. L. Wunder, “Preparation of microporous PVDF based polymer electrolytes”, J. Power Sources, 97-98, 649-653 (2001)
[42] C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno and P. Rigaud, “Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts”, Solid State Ionics, 11, 91-95 (1983)
[43] C. A. Angell, “Recent developments in fast ion transport in glassy and amorphous materials”, Solid State Ionics, 18-19, 72-88 (1985)
[44] M. A. Ratner and D. F. Shriver, “Ion transport in solvent-free polymers”, Chem. Rev., 88, 109-124 (1988)
[45] M. A. Ratner, Ch.7 in Polymer Electrolyte Reviews-1, J. R. MacCallum and C. A. Vincent, Eds., Elsevier, London (1989)
[46] F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane and M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(acrylonitrile)”, Chem. Mater., 5, 1268-1272 (1993)
[47] P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane and M. Salomon, “Sodium-23 NMR and complex impedance studies of gel electrolytes based on poly(acrylonitrile)”, Solid State Ionics., 73, 119-126 (1994)
[48] P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane and M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(methyl methacrylate)”, Electrochim. Acta, 40, 2137-2141 (1995)
[49] Z. Wang, B. Huang, H. Huang, L. Chen, R. Xue and F. Wang, “Infrared spectroscopic study of the dual plasticizer γ-butyrolactone and sulpholane”, Solid State Ionics, 85, 159-162 (1996)
[50] D. Ostrovskii, A. Brodin , L. Torell, G. B. Appetecchi and B. Scrosati, “Molecular and ionic interactions in poly(acrylonitrile)- and poly (methylmetacrylate)- based gel electrolytes”, J. Chem. Phys., 109, 7618- 7624 (1998)
[51] Z. Wang, B. Huang, R. Xue, X. Huang and L. Chen, “Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes”, Solid State Ionics, 121, 141-156 (1999)
[52] E. Cazzanelli, G. Mariotto, G. B. Appetecchi, F. Croce, and B. Scrosati, “Study of ion-molecule interaction in poly(methyl methacrylate) based gel electrolytes by Raman spectroscopy”, Electrochim. Acta, 40, 2379-2382 (1995)
[53] Z. Wang, B. Huang, Z. Lu, S. Wang, R. Xue and L. Chen, “Vibrational spectroscopic studies of interactions between LiClO4 and the plasticizer dimethylformamide”, Solid State Ionics, 92, 265-271 (1996)
[54] Z. Wang, B. Huang, Z. Lu, S. Wang, R. Xue, L. Chen and F. Wang, “The vibrational spectroscopic study of polyacrylonitrile-based electrolytes”, Spectrochim. Acta Part A, 52, 691-703 (1996)
[55] Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang and L. Chen, “Competition between the plasticizer and polymer on associating with Li+ ions in polyacrylonitrile-based electrolytes”, J. Electrochem. Soc., 144, 778-786 (1997)
[56] B. Huang, Z. Wang, L. Chen, R. Xue and F. Wang, “The mechanism of lithium ion transport in polyacrylonitrile based polymer electrolytes”, Solid State Ionics, 91, 279-284 (1996)
[57] J. Y. Song, Y. Y. Wang and C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries”, J. Power Sources, 77, 183-197 (1999)
[58] A. Du Pasquier, F. Disma, T. Bowmer, A. S. Gozdz, G. Amatucci and J-M. Tarascon, “Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries”, J. Electrochem. Soc., 145, 472-477 (1998)
[59] H. Maleki, G. Deng, A. Anani and J. Howard, “Thermal stability studies of Li-ion cells and components”, J. Electrochem. Soc., 146, 3224-3229 (1999)
[60] M. N. Richard and J. R. Dahn, “Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte I. Experimental”, J. Electrochem. Soc., 146, 2068-2077 (1999)
[61] Ph. Biensan, B. Simon, J. P. Peres, A. de Guibert, M. Broussely, J. M. Bodet and F. Perton, “On safety of lithium-ion cells”, J. Power Sources, 81-82, 906-912 (1999)
[62] S. Tobishima, K. Takei, Y. Sakurai and J. Yamaki, “Lithium ion cell safety”, J. Power Sources, 90, 188-195 (2000)
[63] J. Yamaki, H. Takatsuji, T. Kawamura and M. Egashira, “Thermal stability of graphite anode with electrolyte in lithium-ion cells”, Solid State Ionics, 148, 241-245 (2002)
[64] E. P. Roth and D. H. Doughty, “Thermal abuse performance of high-power 18650 Li-ion cells”, J. Power Sources, 128, 308-318 (2004)
[65] H. H. Lee, C. C. Wan and Y. Y. Wang, “Thermal stability of the solid electrolyte interface on carbon electrodes of lithium batteries”, J. Electrochem. Soc., 151, A542-A547 (2004)
[66] R. Spotnitz and J. Franklin, “Abuse behavior of high-power, lithium-ion cells”, J. Power Sources, 113, 81-100 (2003)
[67] S. Tobishima and J. Yamaki, “A consideration of lithium cell safety”, J. Power Sources, 81-82, 882-886 (1999)
[68] Y. F. Chen and J. W. Evans, “Thermal analysis of lithium polymer electrolyte batteries by a two dimensional model-thermal behaviour and design optimization”, Electochim. Acta, 39, 517-526 (1994)
[69] Underwriters Laboratories Inc., “Standard for lithium batteries”, UL 1642, third edition (1995)
[70] Underwriters Laboratories Inc., “Standard for household and commercial batteries”, UL 2054 (1997)
[71] S. Tobishima, Y. Sakurai and J. Yamaki, “Safety characteristics of rechargeable lithium metal cells”, J. Power Sources , 68, 455-458 (1997)
[72] K. Kitoh and H. Nemoto, “100Wh large size Li-ion batteries and safety tests”, J. Power Sources , 81-82, 887-890 (1999)
[73] M. S. Wu, P. C. J. Chiang, J. C. Lin and Y. S. Jan, “Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests-short-circuit tests”, Electrochim. Acta, 49, 1803-1812 (2004)
[74] S. Al Hallaj, H. Maleki, J. S. Hong and J. R. Selman, “Thermal modeling and design considerations of lithium-ion batteries”, J. Power Sources , 83, 1-8 (1999)
[75] J. T. Lundquist, C. B. Lundsager, N. I. Palmer and H. J. Troffkin, “Battery separator”, U. S. Patent No.4,650,730 (1987)
[76] J. T. Lundquist, C. B. Lundsager, N. I. Palmer and H. J. Troffkin, “Battery separator”, U. S. Patent No. 4,731,304 (1988)
[77] H. T. Taskier, S. M. Mullins, E A. Langford and R. J. Fleming, “Battery separator with integral thermal fuse”, U. S. Patent No. 4,973,532 (1990)
[78] W. C. Yu and M. W. Geiger, “Shutdown, bilayer battery separator”, U. S. Patent No. 5,565,281 (1996)
[79] H. Kuruchi, T. Akazawa and A. Kawabata, “Porous multi-layer film”, U. S. Patent No. 5,691,047 (1997)
[80] R. M. Spotnitz, “Trilayer battery separator”, U. S. Patent No. 6,180,280 (2001)
[81] R. W. Call, P. C. Cook, S. E. Hux, K. V. Nguyen and W. C. Yu, “Structurally stable fusible battery separators and method of making same”, U. S. Patent No. 6,346,350 (2002)
[82] F. C. Laman, M. A. Gee and J. Denovan, “Impedance studies for separators in rechargeable lithium batteries”, J. Electrochem. Soc., 140, L51-L53 (1993)
[83] G. Venugopal, J. Moore, J. Howard and S. Pendalwar, “Characterization of microporous separators for lithium-ion batteries”, J. Power Sources , 77, 34-41 (1999)
[84] G. Venugopal, “Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries”, J. Power Sources , 101, 231-237 (2001)
[85] R. A. M. Hikmet and M. P. J. Peeters, “A study of the effect of the polymer network and the solvent on the ion conductivity in gels”, Solid State Ionics, 126, 25-39 (1999)