簡易檢索 / 詳目顯示

研究生: 周擎暘
Chou, Ching-Yang
論文名稱: 垂直入射鍺光偵測器的臨界耦合分析
Critically coupled Germanium photodetector under vertical illumination
指導教授: 那允中
Neil Na
口試委員: 李明昌
林建中
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 光偵測器臨界耦合共振腔增強PIN光偵測器反常色散關係鏡子
外文關鍵詞: Photodetector, Resonant-Cavity-Enhanced, Critical coupled, anomalous-dispersion
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們設計一個高效率-頻寬乘積(EBP)的PIN鍺光偵測器,並將光纖耦合進環形共振腔的“臨界耦合”現象,運用在元件上,使所有入射光能量被鎖進共振腔中,大幅提高鍺的吸收效率,使得只需數百奈米厚度的鍺,就可以達到90%的量子效率,傳統上PIN鍺光偵測器,則需要數微米,並且因為厚度很薄,載子傳輸時間短,頻寬可以高達50GHz,但缺點是線寬只有 ,為了改善線寬太窄,容易受波長漂移影響而降低量子效率,我們運用了反色散關係鏡子,利用其特殊的反射相位趨勢,補償了因雷射不穩,導致波長偏離造成的相位損失,進一步達到平頂陡邊的高量子效率頻譜。


    We design a High efficiency-bandwidth product(EBP) PIN Germanium photodector and use critical coupling theory to analysis our structure . It can lock all incident light in this photodector so significantly enhance Quantum efficiency result in only several hundreds of nanometer thickness but Quantum efficiency can exceed 90%.Because of a very thin depletion region, carrier spend a few transit time , and bandwidth can exceed 50GHz . Some disadvantage like linewidth is too narrow so if light source wavelength shift let Quantum efficiency drop significantly , To overcome this problem , we use anomalous dispersion mirror to compensate cavity total phase and realize flat-top Quantum efficiency.

    目錄 中文摘要 i 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2.1 矽基板鍺光偵測器 3 1-2.2 高效率或高頻寬鍺光偵測器 4 1-2.3 平頂量子效率頻譜 6 1-3 研究動機 8 1-4 論文架構 9 第二章 理論背景 10 2-1 光偵測器原理 10 2-2 共振增強光偵測器(RCE) 13 2-3 臨界耦合分析 18 2-4 反常色散關係鏡子 23 2-5 法布里-珀羅共振腔 27 2-5-1 散射矩陣形式 27 2-5-2 法布里-珀羅共振腔 29 第三章 元件設計與模擬 32 3-1鍺光偵測器的臨界耦合設計 32 3-1-1元件設計 32 3-1-2 理論計算 35 3-1-3 RC時間常數 39 3-1-4 解析計算成果 42 3-2 有限時域差分法模擬結果 45 3-3 解析反常色散關係鏡子 49 3-4 平頂量子效率頻譜 56 第四章 結論與未來工作 66 4-1 結論 66 4-2 未來工作 67 參考文獻 68

    參考文獻
    1. Masini, G., et al., High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration. Electron Devices, IEEE Transactions on, 2001. 48(6): p. 1092-1096.
    2. High-performance Ge-on-Si photodetectors, J.L.L.C.K. Jurgen Michel1, Editor. 2010.
    3. DeRose, C.T., et al., Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Optics Express, 2011. 19(25): p. 24897-24904.
    4. Yu, H.-Y., et al., High-Efficiency p-i-n Photodetectors on Selective-Area-Grown Ge for Monolithic Integration. Electron Device Letters, IEEE, 2009. 30(11): p. 1161-1163.
    5. Joo, J., et al., High-sensitivity 10 Gbps Ge-on-Si photoreceiver operating at ? ~1.55 ?m. Opt. Express, 2010. 18(16): p. 16474-16479.
    6. Osmond, J., et al., 40 Gb/s surface-illuminated Ge-on-Si photodetectors. Applied Physics Letters, 2009. 95(15): p. 151116-151116-3.
    7. Klinger, S., et al., Ge-on-Si p-i-n Photodiodes With a 3-dB Bandwidth of 49 GHz. Photonics Technology Letters, IEEE, 2009. 21(13): p. 920-922.
    8. Zhang, X., et al., Flat-top steep-edge photodetector with cascaded grating structure. Appl. Opt., 2009. 48(35): p. 6760-6764.
    9. Zhou, Y., et al., Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response. Optics & Laser Technology, 2012. 44(1): p. 285-289.
    10. Tischler, J.R., M.S. Bradley, and V. Bulovi, Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Optics Letters, 2006. 31(13): p. 2045-2047.
    11. Casalino, M., et al., Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm. Optics Express, 2012. 20(11): p. 12599-12609.
    12. Lumerical Solutions,Inc.,http://www.lumerical.com/.
    13. Saleh, B.E.A. and M.C. Teich, Fundamentals of Photonics. 2013: Wiley.
    14. 劉博文, 光電元件導論. 2007.
    15. 吳孟奇、洪勝富、連振炘、龔正、吳忠義, 半導體元件Solod State Electronic Devices (Sixth Edition). 2007.
    16. Kishino, K., et al., Resonant cavity-enhanced (RCE) photodetectors. Quantum Electronics, IEEE Journal of, 1991. 27(8): p. 2025-2034.
    17. Unlu, M.S. and S. Strite, Resonant cavity enhanced photonic devices. Journal of Applied Physics, 1995. 78(2): p. 607-639.
    18. El-Batawy, Y.M. and M.J. Deen. Resonant cavity enhanced photodetectors (RCE-PDs): structure, material, analysis and optimization. 2003.
    19. Unlu, M.S., et al., Resonant cavity enhanced AlGaAs/GaAs heterojunction phototransistors with an intermediate InGaAs layer in the collector. Applied Physics Letters, 1990. 57(8): p. 750-752.
    20. Yariv, A., Critical coupling and its control in optical waveguide-ring resonator systems. Photonics Technology Letters, IEEE, 2002. 14(4): p. 483-485.
    21. Cai, M., O. Painter, and K.J. Vahala, Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System. Physical Review Letters, 2000. 85(1): p. 74-77.
    22. Yariv, A., Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 2000. 36(4): p. 321-322.
    23. Troitski, Y.V., Dispersion-free, multiple-beam interferometer. Appl. Opt., 1995. 34(22): p. 4717-4722.
    24. Troitskiĭ, Y.V., Interferometer for measuring ultrasmall displacements with a nonmonochromatic light source. Soviet Journal of Quantum Electronics, 1992. 22(11): p. 1051.
    25. Troitski, Y.V. Dispersion-free Fabry-Perot interferometer for measuring very small displacements. 1993.
    26. Wu, T.-T., et al., A critically coupled Germanium photodetector under vertical illumination. Opt. Express, 2012. 20(28): p. 29338-29346.
    27. Morse, M., et al., Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules. Photonics Technology Letters, IEEE, 2006. 18(23): p. 2442-2444.
    28. Finetti, M., et al., Contact resistivity of silicon/silicide structures formed by thin film reactions. Thin Solid Films, 1985. 130(1–2): p. 37-45.
    29. Stavitski, N., et al., Systematic TLM Measurements of NiSi and PtSi Specific Contact Resistance to n- and p-Type Si in a Broad Doping Range. Electron Device Letters, IEEE, 2008. 29(4): p. 378-381.
    30. Doi, Y., et al., Flat and high responsivity CWDM photoreceiver using silica-based AWG with multimode output waveguides. Electronics Letters, 2003. 39(22): p. 1603-1604.
    31. Nelson, B.E., et al., Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting. Opt. Lett., 2000. 25(20): p. 1502-1504.
    32. Kilic, O., S. Fan, and O. Solgaard, Analysis of guided-resonance-based polarization beam splitting in photonic crystal slabs. J. Opt. Soc. Am. A, 2008. 25(11): p. 2680-2692.
    33. Mateus, C.F.R., et al., Broad-band mirror (1.12-1.62 μm) using a subwavelength grating. Photonics Technology Letters, IEEE, 2004. 16(7): p. 1676-1678.
    34. Mateus, C.F.R., et al., Ultrabroadband mirror using low-index cladded subwavelength grating. Photonics Technology Letters, IEEE, 2004. 16(2): p. 518-520.
    35. Troitski, Y.V., Synthesis of mirrors with anomalous dispersion of the reflection phase. Optical Engineering, 1995. 34(5): p. 1503-1507.
    36. Chen, C.-H., K. Tetz, and Y. Fainman, Resonant-cavity-enhanced p-i-n photodiode with a broad quantum-efficiency spectrum by use of an anomalous-dispersion mirror. Appl. Opt., 2005. 44(29): p. 6131-6140.
    37. Chyong-Hua, C. and Y. Fainman, Photonic Bandgap Microcavities With Flat-Top Response. Selected Topics in Quantum Electronics, IEEE Journal of, 2007. 13(2): p. 262-269.
    38. Gryshchenko, S.V., et al. Optical absorption and quantum efficiency in the resonant-cavity detector with anomalous dispersion layer. in Numerical Simulation of Optoelectronic Devices, 2008. NUSOD '08. International Conference on. 2008.
    39. Gryshchenko, S.V., et al., Influence of anomalous dispersion mirror properties on quantum efficiency of InGaAs/GaAs resonant cavity photodetector. Opto-Electronics Review, 2011. 19(3): p. 296-300.
    40. Gryshchenko, S.V., A.A. Demin, and V.V. Lysak. Quantum efficiency and reflection in resonant cavity photodetector with anomalous dispersion mirror. in Advanced Optoelectronics and Lasers, 2008. CAOL 2008. 4th International Conference on. 2008.
    41. Fan, S. and J.D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Physical Review B, 2002. 65(23): p. 235112.
    42. Fan, S., W. Suh, and J.D. Joannopoulos, Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 2003. 20(3): p. 569-572.
    43. Wang, S.S. and R. Magnusson, Theory and applications of guided-mode resonance filters. Appl. Opt., 1993. 32(14): p. 2606-2613.
    44. Lemoff, B.E., et al., MAUI: enabling fiber-to-the-Processor with parallel multiwavelength optical interconnects. Lightwave Technology, Journal of, 2004. 22(9): p. 2043-2054.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE