研究生: |
黃筱傑 |
---|---|
論文名稱: |
組織等效比例計數器應用於中子之微劑量研究 Microdosimetry Study of Neutrons using the Tissue Equivalent Proportional Counter |
指導教授: |
董傳中
Chuan-Jong Tung 張似瑮 Szu-Li Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 微劑量學 、組織等效比例計數器 、鉲252 |
外文關鍵詞: | Microdosimetry, Tissue Equivalent Proportional Counter (TEPC), Californium 252 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1950年代起,為了分析輻射與介質作用時能量沉積的微觀分佈,美國Rossi教授便提出了微劑量學(microdosimetry)相關理論及實驗方法。約在1960年時,為了度量微劑量學參數, Rossi教授製作了第一個球形組織等效比例計數器(tissue equivalent proportional counter, TEPC),日後也成為度量微劑學參數的標準偵檢器。目前國際上對於此類偵檢器已有深入的研究,亦有應用於太空中宇宙射線量測、環境輻射監測、民航機上的人員劑量評估…等。相較於國內,僅有本實驗室與英國聖安德魯斯大學(St. Andrews university)合作,設計製作了兩支球形組織等效比例計數器,相關的微劑量學實驗研究也不多。因此本論文利用核能研究所(Institute of Nuclear Energy Research, INER)之鉲252(252Cf)射源,建立整套量測系統及實驗方法,並對兩支組織等效比例計數器之特性做一探討,希望可作為日後相關研究之參考。
本論文中使用了高壓供應器(high voltage supply)、低雜訊前置放大器(preamplifier)、線性放大器(linear amplifier)、多頻道分析器(multiple channel analyzer, MCA)、鋂-241(241Am)校正射源,及核能研究所鉲252(252Cf)中子射源等設備。實驗中在不同距離及不同角度對鉲252裸射源做量測,以便對距離及角度依存性做一探討,並將鉲252裸射源之能譜與文獻比較,以驗證所得能譜之正確性;另外,亦分別量測加了不同厚度水假體及加重水球後之鉲252微劑量學能譜。
由這一系列之實驗可以發現,現有的計數器在使用上會有其限制,未來首要之務便是找出漏電流的真正原因,並加以解決,方能提昇計數器之效能;而一號計數器則需再做更詳細的測試,方能應用於其他研究之上。。
[1] Dessauer F., Uber einige Wirkungen von Strahlen. I., Z. Phys. 12, 38, 1922.
[2] Crowther I. A., Some considerations relative to the action of X-rays on tissue cells, Proc. Roy. Soc. 96, 207, 1924.
[3] Jordan P., Uber die elementarprozesse der biologischen strahlenwirkung, Radiologica(Berlin)2, 16 and 166, 1938.
[4] Lea D. E., Actions of radiation on living cells, 1946(University Press, Cambridge)
[5] Zirkle R. E., Marchbank D. F. and Kuck K. D., Exponential and sigmoid survival curves resulting from alpha and x-irradiation of Aspergillus spores, J. Cell. Comp. Physiol. 39, Suppl. 1, 75, 1952.
[6] Wilson, K. S. J., Field, S. B., Measurement of LET spectra using a spherical tissue-equivalent proportional counter, Phys. Med. Biol., Vol. 15, No.4, 657-666, 1970.
[7] Srdoc, D., Experimental technique of measurement of microscopic energy distribution in irradiated matter using Rossi counters, Radiat. Res., 43, 302-319, 1970.
[8] Dicello J. F., Gross W. and Kraljevic U., Radiation quality of californium-252, Phys. Med. Biol. 17, 345, 1972.
[9] George D. Oliver, Quam W. M., Wilde W. O., Empirical dose quality distributions of californium-252, Health Physics Pergamon Press, 22, pp. 341-349, 1972.
[10] Kliauga P., Dvorak R., Microdosimetric measurements of ionization by monoenergetic photons, Radiat. Res., 73, 1-20, 1978.
[11] Rossi H. H., Microscopic energy distribution in irradiated matter, Radiation Dosimetry, 43-92, 1967.
[12] Glass W. A., Braby L. A., A wall-less detector for measuring energy deposition spectra, Radiat. Res., 39, 230-240, 1969.
[13] Burmeister J., Kota C. and Maughan R. L., Paired miniature tissue-equivalent proportional counters for dosimetry in high flux epithermal neutron capture therapy beams, Nucl. Instrum. Methods Phys. Res. A 422, 606-610, 1999.
[14] International Atomic Energy Agency. Current status of neutron capture therapy. IAEA-TECODOC-1223. Vienna Austria. 2001.
[15] International Commission on Radiation Units and Measurements, Radiation quantities and units. Report 33. Washington D.C., USA. 1980.
[16] International Commission on Radiation Units and Measurements, Microdosimetry. Report 36. Bethesda, Maryland, USA. 1980.
[17] Rossi H., Zaider M., Microdosimetry and its applications, Springer, NY, U.S.A., 1996.
[18] Nunomiya T., Kim E., Kurosawa T. et al, Measurement of lineal-energy distributions for neutrons of 8 keV to 65 MeV by using a tissue-equivalent proportional counter, Radiation Protection Dosimetry, Vol. 102, No.1, pp. 49-59, 2002.
[19] Waker, A. J. Principles of experimental microdosimetry. Radiation Protection Dosimetry, Vol. 61, No. 4, pp. 297-308, 1995.
[20] Fano, U. Note on the Bragg-Gray cavity principle for measuring energy dissipation. Rad. Res. Vol. 1, 237-240, 1954.
[21] Braby L. A., Johnson G. W. and Barthe J., Practical considerations in the design and construction of tissue-equivalent proportional counters. Radiation Protection Dosimetry, Vol. 61, No. 4, pp. 351-379, 1995.
[22] International Commission on Radiation Units and Measurements, Neutron dosimetry for biology and medicine. Report 26, Washington, U.S.A., 1977.
[23] International Commission on Radiation Units and Measurements, Determination of dose equivalents resulting from external radiation sources. Report 39, Bethesde, Maryland, U.S.A., 1985.
[24] Waker, A. J. Gas gain characteristics of some walled proportional counters used in microdosimetry. Proc. 8th Symposium on microdosimetry. EUR 8375 (Luxembourg: CEC) Vol. 1, pp.1017-1030, 1981.
[25] Prince A., Brookhaven National Laboratory Report No. BNL 50168 (T530), 1969.
[26] Gerdung, S., Pihet, P., Grindborg, J. E., Roos, H., Schrewe, U. J. and Schuhmacher, H. Operation and application of tissue equivalent proportional counters. Radiat. Prot. Dosim. 61, 381-404, 1995.