研究生: |
蔡雯景 Wen-Ching Tsai |
---|---|
論文名稱: |
存在於高次模磁旋行波放大器中之對流不穩定和絕對不穩定 Convective and Absolute Instabilities in a High-Order-Mode Gyrotron Traveling-Wave Amplifier |
指導教授: |
朱國瑞
Kwo-Ray Chu 張存續 Tsun-Hsu Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 絕對不穩定 、對流不穩定 、磁旋行波放大器 |
外文關鍵詞: | absolute instability, convective instability, gyrotron traveling-wave amplifier |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對流不穩定和絶對不穩定攸關磁旋行波放大器是否能穩定操作 的關鍵。Gyro-TWT操作原理根源於前進波的不穩定性,係利用對流不穩定放大輸入訊號;因此,結構造成的反射迴路容易影響輸出訊號的品質。而絕對不穩定所引起的振盪一直是gyro-TWT難以避免的問題,這種利用內部回饋機制形成的不穩定成為阻礙放大效率最主要的原因。為了探討這兩種不穩定對系統造成的影響,本論文針對 模式,第一次諧振模之分佈式損耗磁旋行波放大器進行理論上的分析。在這個系統中,可能存在的振盪來源包括操作在前進波區間的 模式對流不穩定,在電流增大的時候將會激發在cutoff附近的絕對不穩定。另外,還包括第一次諧振模交於返波區間的較低次模振盪,以及第二次諧振模所激發的較高次模振盪。本系統採用分佈式損耗作用段,目的在抑制這些可能產生的不穩定模式。這些由波和電子束同調條件決定的振盪模式涵蓋了一系列從負值到正值的傳播常數,在由損耗段 (lossy section) 和非損耗作用段 (copper section) 組成的線路中呈現了不同的場形包跡。追蹤其中的物理特性,可以解釋不同模式的起振電流對於調變電子和線路參數的敏感度不一。另外配合實際量測結果,我們利用線路結構去模擬反射率對放大波的影響,欲診斷此系統在穩定操作下遇到輸出頻寬不佳的問題。研究發現,出口端的反射是造成飽和輸出功率對頻率響應呈現共振腔特性的原因。這些結果對於目前UC Davis之W-Band磁旋行波放大器實驗上之重要性將在最後討論。
[1] K. R. Chu, “ Overview of research on the gyrotron traveling-wave amplifier ” IEEE Trans. Plasma Sci., vol. 30, pp. 903–908, June 2002.
[2] V. L. Granatstein, B. Levush, B. G. Danly, and R. K. Parker, “A quarter century of gyrotron research and development,” IEEE Trans. Plasma Sci., vol. 25, pp. 1322–1335, Dec. 1997.
[3] K. L. Felch, B. G. Danly, H. R. Jory, K. E. Kreischer, W. Lawson, B. Levush, and R. J. Temkin, “Characteristics and applications of fast-wave gyrodevices,” Proc. IEEE, vol. 87, pp. 752–781, May 1999.
[4] J. L. Seftor, V. L. Granatstein, K. R. Chu, P. Sprangle, and M. E. Read, “The electron cyclotron maser as a high power traveling-wave amplifier of millimeter waves,” IEEE J. Quantum Electron., vol. QE-15, pp. 848–853, 1979.
[5] J. L. Seftor, A. T. Drobot, and K. R. Chu, “An investigation of a magnetron injection gun suitable for use in cyclotron resonance masers,” IEEE Trans. Electron Devices, vol. ED-26, pp. 1609–1616, 1979.
[6] L. R. Barnett, K. R. Chu, J. M. Baird, V. L. Granatstein, and A. T. Drobot, “Gain, saturation, and bandwidth measurements of the NRL gyrotron traveling wave amplifier,” in IEDM Tech. Dig., 1979, pp. 164–167.
[7] R. S. Symons, H. R. Jory, and S. J. Hegji, “An experimental gyro-TWT,” in IEDM Tech. Dig., 1979, pp. 676–679.
[8] P. E. Ferguson and R. S. Symons, “A C-band gyro-TWT,” in IEDM Tech. Dig., 1980, pp. 310–313.
[9] R. S. Symons, H. R. Jory, S. J. Hegji, and P. E. Ferguson, “An experimental gyro-TWT,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 181–184, 1981.
[10] P. E. Ferguson, G. Valier, and R. S. Symons, “Gyrotron-TWT operating characteristics,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 794–799, 1981.
[11] H. R. Jory, private communication.
[12] Y. Y. Lau and K. R. Chu, “Gyrotron traveling wave amplifier—A proposed wideband fast wave amplifier,” Int. J. Infrared Millim. Waves, vol.2, pp. 415–425, 1981.
[13] K. R. Chu, Y. Y. Lau, L. R. Barnett, and V. L. Granatstein, “Theory of a wideband distributed gyrotron traveling wave amplifier,” IEEE Trans. Electron Devices, vol. ED-28, pp. 866–871, 1981.
[14] L. R. Barnett, Y. Y. Lau, K. R. Chu, and V. L. Granatstein, “An experimental wideband gyrotron traveling-wave amplifier,” IEEE Trans. Electron Devices, vol. ED-28, pp. 872–875, 1981.
[15] L. R. Barnett, L. H. Chang, H. Y. Chen, K. R. Chu, Y. K. Lau, and C. C. Tu, “Absolute instability competition and suppression in a millimeter-wave gyrotron traveling-wave tube,” Phys. Rev. Lett., vol. 63, pp. 1062–1065, 1989.
[16] K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, and H. Y. Chen, “A wide-band millimeter-wave gyrotron traveling-wave amplifier experiment,” IEEE Trans. Electron Devices, vol. 37, pp. 1557–1560, June1990.
[17] K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, and C. S. Kou, “Recent development in millimeter wave gyro-TWT research at NTHU,” in IEDM Tech. Dig., 1990, pp. 699–702.
[18] K. R. Chu, L. R. Barnett, H. Y. Chen, S. H. Chen, Ch. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, “Stabilizing of absolute instabilities in gyrotron traveling-wave amplifier,” Phys. Rev. Lett., vol. 74, pp. 1103–1106, 1995.
[19] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, “Ultra high gain gyrotron traveling wave amplifier,” Phys. Rev. Lett., vol. 81, pp. 4760–4763, 1998.
[20] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. Dialetis, “Theory and experiment of ultrahigh-gain gyrotron traveling-wave amplifier,” IEEE Trans. Plasma. Sci., vol. 27, pp. 391–404, Apr. 1999.
[21] M. Garven, J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood, and D. E. Pershing, IEEE Trans. Plasma Sci. 30, 885 (2002).
[22] Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., Phys. Rev. Lett. 75, 4322 (1995).
[23] Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., IEEE Trans. Plasma Sci. 24, 700 (1996).
[24] C. K. Chong, D. B. McDermott, and N. C. Luhmann, Jr., IEEE Trans. Plasma Sci. 26, 500 (1998).
[25] H. H. Song, D. B. McDermott, Y. Hirata, L. R. Barnett, C. W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu, and N. C. Luhmann, Jr., Phys. Plasmas 11, 2935 (2004).
[26] G. S. Park, J. J. Choi, S. Y. Park, C. M. Armstrong, A. K. Ganguly, R. H. Kyser, and R. K. Parker, Phys. Rev. Lett. 74, 2399 (1995).
[27] H. Guo, S. H. Chen, V. L. Granatstein, J. Rogers, G. S. Nusinovich, M. Waters, B. Levush, and W. J. Chen, Phys. Rev. Lett. 79, 515 (1997).
[28] J. Rodgers, H. Guo, G. S. Nusinovich, and V.L. Granatstein, IEEE Trans. Electron Devices 48, 2434 (2001).
[29] K. R. Chu, H. Guo, and V. L. Granatstein, Phys. Rev. Lett. 78, 4661 (1997).
[30] G. G. Denisov, V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, IEEE Trans. Plasma Sci. 26, 508 (1998).
[31] G. G. Denisov, V. L. Bratman, A. W. Gross, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte, Phys. Rev. Lett. 81, 5680 (1998).
[32] V. L. Bratman, A. W. Gross, G. G. Denisov, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, C. G. Whyte, and A. R. Young, Phys. Rev. Lett. 84, 2746 (2000).
[33] Sirigiri, J. R., M. A. Shapiro, and R. J. Temkin, in IVEC 2002 of the third IEEE Int. Vacuum Electronics Conf., p. 83, 2002.
[34] J. R. Sirigiri, M. A. Shapiro, and R. J. Temkin, Phys. Rev. Lett. 90, 258302 (2003).
[35] Y. Y. Lau, K. R. Chu, L. R. Barnett, and V. L. Granatstein, “Effects of velocity spread and wall resistivity on the gain and bandwidth of the gyrotron traveling-wave amplifier,” Int. J. Infrared Millimeter Waves, vol. 2, pp. 395–413, 1981.
[36] K. R. Chu and A. T. Lin, “Gain and bandwidth of the gyro-TWT and CARM amplifier,” IEEE Trans. Plasma Sci., vol. 16, pp. 90–104, Feb. 1988.
[37] R. J. Briggs, Electron-Stream Interaction with Plasmas (Cambridge, MA: MIT, 1964).
[38] K. R. Chu and J. L. Hirshfield, Phys. of Fluids 21, 461 (1978).
[39] K. R. Chu, Rev. Modern Phys. 76, 2004 (April issue, in press).