研究生: |
王顗智 Wang, Yi-Chih |
---|---|
論文名稱: |
固態物理分析以氧空缺方法增進超級電池陰極鋰離子嵌入性能 Solid State Physics Analysis on Enhancing the Li-Ion Intercalation Performance in Super-Battery Cathode Using Oxygen Vacancy Methodology |
指導教授: |
洪哲文
Hong, Che-Wun |
口試委員: |
董瑞安
Doong, Ruey-An 張博凱 Chang, Bor-Kae 林洸銓 Lin, Kuang-Chuan 三政鴻 San, Cheng-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 氧空缺 、擴散係數 、鋰離子電池 、陰極 、第一原理計算 |
外文關鍵詞: | oxygen vacancy, diffusion cofficient, li-ion battery, cathode, first-principles calculation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當今儲存電能技術之發展趨勢,乃是結合快速充放電的超級電容與高能量密度的超級電池設計,同時提升功率密度與能量密度,進一步提升電容量以及考慮製造成本降低,其中陰極材料是決定超級鋰離子電池性能相當關鍵的一環,因此本研究提出新陰極材料並事先評估其性能即為研究重點目標。
本研究提出之陰極材料為α-MoO3(α-三氧化鉬),此材料具有比惰性電極碳更高之還原電位,其分子結構為層狀結構,鋰離子易於嵌入其中,可儲存較高的鋰離子濃度,故理論上具有高比電容值1117mAhg-1(目前市場約150-200 mAhg-1),此外其材料成本相當低(約為目前40%),是極具潛力的新進陰極材料;然而其原先材料電子導電度低、鋰離子擴散速率普通以及鋰離子嵌入遷出過程中材料體積變化大,限制其使用及壽命;本論文提出在氧化物陰極材料製造氧空缺以改善離子導電率,並增進電池充放電效能,故本研究內容將是α-MoO3之氧空缺與電池充放電過程模擬及性能分析。
本論文利用固態物理第一原理來分析氧空缺對於鋰離子嵌入α-MoO3之影響,在無氧空缺情況下,其開路電壓為2.8 V,並觀察到鋰離子嵌入過程中沿著材料表面(010)擴散,計算擴散能障為0.551 eV;根據原子鍵結強度之不同,本研究建立多種氧空缺結構,模擬分析鋰離子嵌入過程,預測結果其開路電壓能提升至3.0 V,且擴散能障降至約0.301 eV,意即其材料於鋰離子嵌入遷出過程中,體積變化減小,有助於壽命提升,而離子導電度比原先提升約6000倍,達到1.18x10-7cm2/s,為現今材料NCM之200倍成長,改善了原先材料應用於鋰離子電池陰極之性能。
本論文提出透過建立氧空缺方法來改善鋰離子陰極材料性能,在可見未來,鋰離子電池陰極材料發展會逐漸轉換成過渡金屬氧化物,此固態物理第一原理模擬可用以提前預測效能,並開發更高性能之鋰離子超級電池。
Super-batteries are designed to combine the advantages of high power density supercapacitors and the original high energy density of lithium ion batteries (LiBs). At the same time, further rising the capacity and lower down the production cost are also very important. The key technology is the cathode materials selection to increase the conductivity as well as to further endure the high temperature due to high rate of charge and discharge. This research aims to develop the simulation technology to predict the cathode properties and to detail the ionic transport phenomena.
α-MoO3(α-Molybdenum Oxide) has a great potential to be the new cathode material due to its extraordinary specific theoretical capacity 1117 mAh/g, comparing with the current status at 150-200 mAh/g of commercial batteries. However, low diffusivity and modest reaction kinetics limit its widespread use. This research proposes to create oxygen vacancies in the metal oxides is beneficial to diffusivity and enhance charge/discharge rate.
This thesis employs solid state physics based first principles calculation to analyze the influence of oxygen vacancy on the α-MoO3 during Li+ intercalation process. Comparing with the original α-MoO3, the oxygen vacancy can decrease the diffusion barrier from 0.551 eV to 0.301 eV, and increase the ionic diffusivity around 6000 times to 1.18x10-7cm2/s, which is 200 times higher than the commercial nickel-cobalt-manganese cathode (NCM, 5x10-10 cm2/s). That means oxygen vacancy technology is able to dramatically promote the charge/discharge rate and also longer the battery lifetime, which are the criteria to develop a future super-battery.
[1] Taiwan Power Company (https://www.taipower.com.tw/tc/index.aspx)
[2] S. Zhang & N. Pan, “Supercapacitors Performance Evaluation,” Advanced Energy Materials, 5(6), 1401401, 2014.
[3] M. Yoshio, H. Wang, K. Fukuda, T. Umeno, T. Abe, & Z. Ogumi, “Improvement of Natural Graphite as a Lithium-ion Battery Anode Material from Raw Flake to Carbon-Coated Sphere,” Journal of Materials Chemistry, 14(11), 1754-1758, 2004.
[4] N. Nitta, F. Wu, J. T. Lee, & G. Yushin, “Li-Ion Battery Materials: Present and Future,” Materials Today, 18(5), 252-264, 2015.
[5] K. Koike, R. Wada, S. Yagi, Y. Harada, S. Sasa, & M. Yano, “Characteristics of MoO3 Films Grown by Molecular Beam Epitaxy,” Japanese Journal of Applied Physics, 53(5S1), 05FJ02, 2014.
[6] H. Sitepu, B. H. O'Connor, & D. Li, “Comparative Evaluation of the March and Generalized Spherical Harmonic Preferred Orientation Models Using X-Ray Diffraction Data for Molybdite and Calcite Powders,” Journal of Applied Crystallography, 38(1), 158-167, 2005.
[7] G. Svensson, & L. Kihlborg, “A Molybdenum Oxide with a WO3-Type Structure Obtained by Oxidation of (Orthorhombic) Mo4O11,” Reactivity of Solids, 3(1-2), 33-43, 1987.
[8] N. A. Caiger, S. Crouch-Baker, P. G. Dickens, & G. S. James, “Preparation and Structure of Hexagonal Molybdenum Trioxide,” Journal of Solid State Chemistry, 67(2), 369-373, 1987.
[9] W. Li, F. Cheng, Z. Tao, & J. Chen, “Vapor-Transportation Preparation and Reversible Lithium Intercalation/Deintercalation of α-MoO3 Microrods,” The Journal of Physical Chemistry B, 110(1), 119-124, 2006.
[10] H. Li, P. Balaya, & J. Maier, “Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides,” Journal of the Electrochemical Society, 151(11), A1878-A1885, 2004.
[11] InfoMine (http://www.infomine.com/investment/)
[12] T. Tsumura, & M. Inagaki, “Lithium Insertion/Extraction Reaction on Crystalline MoO3,” Solid State Ionics, 104(3-4), 183-189, 1997.
[13] K. Sakaushi, J. Thomas, S. Kaskel, & J. Eckert, “Aqueous Solution Process for the Synthesis and Assembly of Nanostructured One-Dimensional α-MoO3 Electrode Materials,” Chemistry of Materials, 25(12), 2557-2563, 2013.
[14] S. Balendhran, J. Deng, J. Z. Ou, S. Walia, J. Scott, J. Tang, & M. S. Strano, “Enhanced Charge Carrier Mobility in Two-Dimensional High Dielectric Molybdenum Oxide,” Advanced Materials, 25(1), 109-114, 2013.
[15] G. Kresse, & J. Furthmüller, “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set,” Physical Review B, 54(16), 11169, 1996.
[16] G. Kresse, & D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,” Physical Review B, 59(3), 1758, 1999.
[17] Y. Cui, Y. Zhao, H. Chen, K. Wei, S. Ni, Y. Cui, & S. Shi, “First-Principles Study of MoO3/Graphene Composite as Cathode Material for High-Performance Lithium-Ion Batteries,” Applied Surface Science, 433, 1083-1093, 2018.
[18] P. Hohenberg, & W. Kohn, “Inhomogeneous Electron Gas,” Physical Review, 136(3B), B864, 1964.
[19] W. Kohn, & L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, 140(4A), A1133, 1965.
[20] J. P. Perdew, & Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy,” Physical Review B, 45(23), 13244, 1992.
[21] J. P. Perdew, K. Burke, & M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, 77(18), 3865, 1996.
[22] S. Kristyán, & P. Pulay, “Can (Semi) Local Density Functional Theory Account for the London Dispersion Forces,” Chemical Physics Letters, 229(3), 175-180, 1994.
[23] S. Grimme, “Semiempirical GGA Type Density Functional Constructed with a Long-Range Dispersion Correction,” Journal of Computational Chemistry, 27(15), 1787-1799, 2006.
[24] S. Grimme, J. Antony, S. Ehrlich, & H. Krieg, “A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu,” The Journal of Chemical Physics, 132(15), 154104, 2010.
[25] V. I. Anisimov, F. Aryasetiawan, & A. I. Lichtenstein, “First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: the LDA+ U Method,” Journal of Physics: Condensed Matter, 9(4), 767, 1997.
[26] M. Cococcioni, & D. G. Stefano, “Linear Response Approach to the Calculation of the Effective Interaction Parameters in the LDA+ U Method,” Physical Review B, 71(3), 035105, 2005.
[27] H. Jónsson, G. Mills, & K. W. Jacobsen, “Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions,” Classical and Quantum Dynamics in Condensed Phase Simulations, 385-404, 1998.
[28] G. Henkelman, B. P. Uberuaga, & H. Jónsson, “A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths,” The Journal of Chemical Physics, 113(22), 9901-9904, 2000.
[29] Introduction to Quantum Chemical Simulation Graduate Course Taught at MIT in Fall 2014 by Heather Kulik. (https://www.slideshare.net/qchemforqespresso/lecture6-46436739)
[30] E. R. Davidson, “The Iterative Calculation of a few of the Lowest Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Matrices,” Journal of Computational Physics, 17, 87-94, 1975.
[31] G. Kresse, & F. Jürgen, “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set,” Physical Review B, 54(16), 11169, 1996.
[32] K. Inzani, “A van der Waals Density Functional Study of MoO3 and its Oxygen Vacancies,” The Journal of Physical Chemistry C, 120(16), 8959-8968, 2016.
[33] D. Hong, “Structural and Vibrational Properties of α-MoO3 from van der Waals Corrected Density Functional Theory Calculations,” Physical Review B, 85(1), 012104, 2012.
[34] H. Philipp, F. Tran, & P. Blaha, “Calculation of the Lattice Constant of Solids with Semilocal Functionals,” Physical Review B, 79(8), 085104, 2009.
[35] K. Sakaushi, “Aqueous Solution Process for the Synthesis and Assembly of Nanostructured One-Dimensional α-MoO3 Electrode Materials,” Chemistry of Materials, 25(12), 2557-2563, 2013.
[36] T. Tsumura, & M. Inagaki, “Lithium Insertion/Extraction Reaction on Crystalline MoO3,” Solid State Ionics, 104(3-4), 183-189, 1997.
[37] F. Li, R. C. Cabrera, & Z. Chen, “Theoretical Design of MoO3-Based High-Rate Lithium Ion Battery Electrodes : The Effect of Dimensionality Reduction,” Journal of Materials Chemistry A, 2(45), 19180-19188, 2014.
[38] G. H. Vineyard, “Frequency Factors and Isotope Effects in Solid State Rate Processes,” Journal of Physics and Chemistry of Solids, 3(1-2), 121-127, 1957.
[39] M. A. Cabañero, “Direct Determination of Diffusion Coefficients in Commercial Li-Ion Batteries,” Journal of the Electrochemical Society, 165(5), A847-A855, 2018.
[40] K. Persson, “Lithium Diffusion in Graphitic Carbon,” The Journal of Physical Chemistry Letters, 1(8), 1176-1180, 2010.
[41] M. Park, “A Review of Conduction Phenomena in Li-Ion Batteries,” Journal of Power Sources, 195(24), 7904-7929, 2010.
[42] S. Yu, “Prediction of Lithium Diffusion Coefficient and Rate Performance by Using the Discharge Curves of LiFePO4 Materials,” Bulletin of the Korean Chemical Society, 32(3), 852-856, 2011.
[43] H. S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, & B. Dunn, “Oxygen Vacancies Enhance Pseudocapacitive Charge Storage Properties of MoO3-x,” Nature materials, 16(4), 454, 2017.
[44] METALARY (https://www.metalary.com/molybdenum-price/)
[45] C. Julien, “Lithium Intercalation in MoO3 : A Comparison Between Crystalline and Disordered Phases,” Applied Physics A, 59(2), 173-178, 1994.
[46] WIKIPEDIA (https://en.wikipedia.org/wiki/Pseudopotential)