研究生: |
林東陽 |
---|---|
論文名稱: |
晶圓廠自動物料搬運系統之動態車數問題 Dynamic vehicle number for AMHS in Wafer Fab |
指導教授: | 林則孟 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 自動化物料搬運系統 、搬運從至表 、搬運車計算 、類神經網路 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以國內某12吋晶圓製造廠之自動化物料搬運系統(Automated Material Handling System,簡稱AMHS)為研究對象。由於半導體製造具有多迴流及複雜的加工途程,造成每台生產機台的生產與搬運需求量會具有不確定性,當搬運需求集中在特定生產區域時,便會使得搬運車發生擁塞現象,而這也是目前自動化物料搬運系統面臨到的搬運車車數計算與調度管理問題。因此,在擁有大量搬運車(200~300部搬運車)的自動化物料搬運系統面臨搬運車配置的問題:「當不同時段生產需求量動態改變造成搬運需求隨著時間改變時,要如何建立車數調派管理的機制來滿足不同生產需求量與搬運需求所需要的系統搬運車數量」。
首先本研究分析搬運需求的來源與特性,經分析後,發現搬運需求的發生可用搬運從至表來表達。因此,進一步的探討確定性搬運從至表的產生方式與用途。再了解確定性搬運從至表後,討論確定性與不確定性搬運從至表的差異以及不確定性搬運從至表的特性與不同的表達方式。緊接著,在考量搬運需求不確定性的情況下,結合類神經網路模式與系統模擬提出「動態之車數決定」方法。首先利用類神經網路模式預測不確定性搬運從至表,再結合系統模擬適時的回饋資訊不斷低更新不確定搬運從至表的預測模式,以計算出符合不同時段系統所需要的搬運車車數。
最後探討不同方案的比較,主要將搬運車數量分為「變動搬運車」與「固定搬運車」兩種方案,發現在「變動搬運車」方面因不同的搬運需求會彈性的調派不同搬運車數量,因此在系統產出績效、晶舟平均等候時間與晶舟平均旅程時間有較佳的表現。
關鍵字:自動化物料搬運系統、搬運從至表、搬運車計算、類神經網路
1.陳惠國,張美香,“路段流量推估起迄旅次量之研究”,中華道路,第33 卷,第2 期,頁3-10,1994。
2.林則孟,“半導體晶圓廠自動化物料搬運系統模擬研究”,八十八年度國科會專題研究計劃,NSC89-2213-E-007-034(執行期限民國88年8月至89年7月)。
3.許純君,預測的原理與應用,台灣西書出版社,1999。
4.林則孟,“半導體晶圓廠自動化物料搬運系統之派車法則模擬分析”,八十九年度國科會專題研究計劃,NSC89-2212-E-007-074(執行期限民國89年8月至90年7月)。
5.陳紹偉,“12吋IC代工廠自動化物料搬運系統之系統模擬與派工法則的研究”,台灣大學機械工程研究所碩士論文,1999。
6.周上傑,“晶圓廠自動化物料搬運系統之派車模擬研究”,清華大學工業工程研究所碩士論文,1999。
7.顏柄榮,“半導體晶圓廠自動化物料搬運系統之模擬分析”,清華大學工業工程與工程管理所碩士論文,2000。
8.凌瑞賢,運輸規劃講義,上課講義,2000。
9.吳俊寬,“晶圓廠連接式自動化物料搬運系統搬運策略之模擬研究”,清華大學工業工程與工程管理所碩士論文,2001。
10.林則孟,系統模擬理論與應用,滄海書局,2001。
11.楊景如,“晶圓廠自動化物料搬運系之搬運車運作策略模擬研究”,清華大學工業工程與工程管理所碩士論文,2002。
12.張原銘,“晶圓廠之自動化物料搬運系之模擬研究-以黃光區與爐管區為例”,清華大學工業工程與工程管理所碩士論文,2003。
13.蘇朝墩,類神經網路模式與應用,上課講義,2006。
14.Arifin, R. and Egbelu, P. J., “Determination of Vehicle Requirements in Automated Guided Vehicle Systems: a Statistical Approcah”, Production Planning and Control, Vol.11, No.3, pp.258-270, 2000.
15.Brain, M., Gould R., Kaempf, U., and Wehrung, B., “Emerging Needs for ontinuous Flow FOUP Transport”, Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, pp.76-82, 1999.
16.Campbell, P. L., and Laitinen, G., “Overhead Intrabay Automation and Microstocking- a Virtual Fab Case Study”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pp.368-372, 1997.
17.Chang, G. L., and Wu, J., “Recursive Estimation of Time-Varying Origin-Destination Flows from Traffic Counts in Freeway Corridors,” Transportation Research, 28B, pp.141-160, 1994.
18.Chrisos, J., Nestel-Patt, J., “Integration Risks in 300-mm Wafer Fab Automation”, Solid State Technology, Vol.41, No.7, pp.193, 196, 198, 200, 202, 1998.
19.Egbelu, P. J., and Tanchoco, J. M. A., ” Characterization of Automated Guided Vehicle Dispatching Rules”, International Journal of Production Research, Vol.22, No.3, pp.359-374, 1984.
20.Fu, H.-S., Liao D.-Y., ”An Effective OHT Dispatching Policy for 300mm AMHS Management,” in the Proceedings of SEMICON TAIWAN 2001, Taipei, Taiwan, September 2001.
21.Hecht-Nielsen, R., Neurocomputing, 1st Edition, Addison-Wesley Publishing Company, Reading, Massachusettts, 1990.
22.Hendrickson, C., McNeil, S., “Estimation of Origin-Destination Matrices with Constrained Regression”, Transportation Research, Record 976, pp.25-32, 1984.
23.Kaempf, U., “Automated Wafer Transport in the Wafer Fab”, IEEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pp.356-361, 1997.
24.Kikuchi, S., Nanda, R., and Perincherry, V., “A Method to Estimate Trip Patterns Using a Neural Network Approach”, Transporation Planning and technology, Vol.17, pp.51-65, 1992.
25.Kobza, J. E., Shen, Y. C., and Reasor, R. J., “A Stochastic Model of Empty-Vehicle Travel Time and Load Request Service Time in Light-Traffic Material Handling Systems”, IIE Transactions, Vol.30, pp.133-142, 1998.
26.Kurosaki, R., Nagao, N., Komada, H., Watanable, Y., and Yano, H., “AMHS for 300mm Wafer”, IEEE International Symposium on Semiconductor Manufacturing Conference, pp.D13-D16, 1997.
27.Landau, U., Geva, I., and Hauer, E., “Maximum-Likelihood and Bayesian Methods for the estimation of Origin-Destination Flows”, Transportation Research, Record 944, pp.101-105, 1983.
28.Liao, D.Y., and Fu, H.S., “Dynamic OHT Allocation and in a Large-Scale, 300-mm AMHS Management”, IEEE Robotics and Automation Magazine, September, pp.22-32, 2004.
29.Lin, J. T., Wang, F. K., and Yen, P. Y., “Simulation Analysis of Dispatching Rules for an Automated Interbay Material Handling System in Wafer Fab”, International Journal of Production Research, Vol.39, No.6, pp1221-1238, 2001.
30.Lin, J. T., Wang, F. K., and Wu, C. K., “Connecting Transport AMHS in a Wafer Fab”, International Journal of Production Research, Vol. 41, No.3, pp.529-544., 2003.
31.Lin, J.T., Wang F.K., and Wu, C.K., “Simulation Analysis of the Connecting Transport of AMHS in Wafer Fab”, IEEE Transactions on Semiconductor Manufacturing, Vol.16, No.3, pp.555-564, 2003.
32.Lin, J.T., Wang F.K., and Yen, P.Y., “The Maximum Loading and the Optimal Number of Vehicles in a Double-Loop of an Interbay Material Handling System”, Production Planning and Control, Vol.15, No.3, pp.247-255, 2004.
33.Lin, J.T., Wang F.K., and Young, J.R., “Virtual Vehicle in the Connecting Transport AMHS”, International Journal of Production Research, Vol.42, No.13, pp.2599-2610, 2004.
34.Lin, J.T., Wang F.K., and Yang, C.J., “The Performance of the Number of Vehicles in a Dynamic Connecting Transport AMHS”, International Journal of Production Research, Vol.43, No.11, pp2263-2276, 2005.
35.Lin, J.T., Wang F.K., and Chang, Y.M., “Ahybrid Push-Pull Dispatching Rule for a Photo Bay in a 300mm Wafer Fab”, Robotics and Computer Integrated Manufacturing, Vol.22, pp.47-55,2006.
36.Mantel, R. J., Landeweerd, H. R.A., “Design and Operational Control of an AGV System”, International Journal of Production Economics, Vol. 41, pp.257-266, 1995.
37.Maxwell, W.L., and Muckstadt, J.A., “Design of Automatic Guided Vehicle Systems”, IIE Transactions, Vol.14, pp.114-124, 1982.
38.Nguyen, S., “Estimating Origin-Destination Matrices from Observed Flows,” Transportation Planning Models, Edited by Florian, M., North-Holland, pp. 363-380, 1984.
39.Peters, B. A. and Yang, T., “Integrated Facility Layout and Material Handling System Design in Semiconductor Fabrication Facilities”, IEEE Transactions on Semiconductor manufacturing, Vol.10, No.3, pp.360-369, 1997.
40.Pierce, N. G., and Stafford R., “Modeling and Simulation of Material Handling for Semiconductor Wafer Fabrication”, Proceedings of the 1994 Winter Simulation Conference, pp.900-906, 1994.
41.Pierce, N. G., and Stafford, R., “Simulation AMHS Performance for Semiconductor Wafer Fabrication”, IEEE/UCS/SEMI International Symposium on Semiconductor Manufacturing, pp.165-170, 1995.
42.Rajotia, S., Shanker, K., and Batra, J. L., “Determination of Optimal AGV Fleet Size for an FMS”, International Journal of Production Research, Vol.36, No.5, pp.1177-1198, 1998.
43.Tanchoco, J. M., Egbelu, P. J., and Taghaboni, F., “Determination of the Total Number of Vehicles in an AGV-based Material Transport System”, Material Flow, Vol.4, pp.33-51, 1987.
44.Weiss, M., “Semiconductor Factory Automation”, Solid State Technology, Vol.39, No.1, pp.89-90, 92, 95-96, 1996.