簡易檢索 / 詳目顯示

研究生: 陳彥任
Yen Ren Chen
論文名稱: 離子化合物在微波場中的熔點下降現象
Melting Point Reduction of Ionic Compounds In Microwave Field
指導教授: 張士欽
口試委員: 金重勳
張存續
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 55
中文關鍵詞: 微波共振腔熔點離子化合物相轉變
外文關鍵詞: microwave, resonant cavity, melting point, ionic compound, phase transition
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於我們使用了一個上方設有開口的單模微波共振腔進行微波加熱,得以在微波加熱過程中經由肉眼觀察到離子化合物在低於正常熔點的溫度下熔化,與此同時來自共振腔的反射訊號強度在離子化合物熔化時有明顯增加的現象。當離子化合物從固態熔化到液態後,電性上從非導體變成導體的劇烈變化,改變了共振腔之中的介電性質上的空間分布,造成共振腔的共振頻率有所偏移,與原來輸入的微波頻率不匹配,進而提高了來自共振腔的反射率與反射訊號強度。所以,藉由離子化合物的溫度上升與當下的反射訊號的變化程度作為依據,我們設計了一個可以在微波共振腔中測量離子化合物熔點的實驗,並且發現熔點下降的程度會隨著離子化合物種類不同而有所差異。我們總共測量了九種鹼土金屬鹵化物,從化合物的組成元素來看,熔點下降的程度有著隨著陽離子半徑增加而增加,但是隨著陰離子半徑增加而減少的趨勢。
      我們也從熱力學性質的方向進行了理論分析,討論了微波場在材料相轉變時的對亂度和熱焓的貢獻:由於輸入的微波頻段與熱振動頻率有數量級上的差異,對亂度的影響甚小,不足以造成與實驗結果相同的熔點下降現象;另一方面,我們從內能在微波場下的變化,進一步來解釋熱焓在微波場下的變化,以及所觀察到的離子化合物熔點下降現象,在數值計算上得到了相同的數量級,更加地確立了往後研究可行的方向。


    We’ve observed that ionic compounds melt at a temperature lower than their normal transition temperature during microwave heating because of a resonant cavity with an opening on the top in use, and the intensity of reflective signal from the cavity becomes larger vividly at the same time. The reason is a tremendous change in electric properties after ionic compounds are molten which results in shifting of the resonant frequency in the cavity, and raising the intensity of reflective signal since mismatching with the input microwave frequency. According to the temperature of the heated sample and the variance in reflective intensity, we’ve designed an experiment to measure the transition point of ionic compounds in a microwave resonant cavity and found that the melting point reductions are varied with different materials. For the 9 kinds of alkali halides that we’ve measured, a general trend has been found that the larger the cation, the more the reduction is, but opposite for the anion.
    We’ve also discussed the effect of microwave field on thermodynamic properties, especially for the entropy and enthalpy change at phase transition under microwave field. Since the input microwave frequency and thermal-vibrational frequency are much different in the order of magnitude, microwave makes almost no contributions on the entropy change at phase transition. On the other hand, we’ve tried to explain the effect on the enthalpy change and melting point reduction based on the microwave effect on the internal energy, and ensured the research interests in the future because of a good result in numerical calculation.

    Chapter 1 Introduction and Motivation Chapter 2 Literature Review 2-1 Development and Applications of Microwave Sintering 2-2 Achievements of Microwave Processing 2-3 Resonant Mode in the Cavity 2-4 Ionic Compounds in Microwave Processing Chapter 3 Experiment Design 3-1 Experimental Principles 3-1-1 Experimental Phenomenon 3-1-2 Analysis of Frequency Response 3-1-3 Experiment Prediction 3-1-4 Experiment Result and Diagram Interpretation 3-2 Experiment Instruments 3-3 Experiment Procedure Chapter 4 Results and Discussion 4-1 Lithium Fluoride (LiF) 4-2 Sodium Fluoride (NaF) 4-3 Potassium Fluoride (KF) 4-4 Lithium Chloride (LiCl) 4-5 Sodium Chloride (NaCl) 4-6 Potassium Chloride (KCl) 4-7 Lithium Bromide (LiBr) 4-8 Sodium Bromide (NaBr) 4-9 Potassium Bromide (KBr) 4-10 Result Comparison & Discussion 4-10-1 The Effect of Entropy Change in Phase Transition 4-10-2The Effect of Enthalpy Change in Phase Transition 4-11 Summaries Reference

    [1]Snyder Jr WB, Sutton WH, lskander MF, Johnson DL (Eds), “Microwave Processing of Materials II,” Pittsburgh, USA MRS, Materials Research Society Proceedings, vol 189, 1990.
    [2] Beatty RL, Sutton WH, lskander MF (Eds), “Microwave Processing of Materials III,” Pittsburgh, USA MRS, Materials Research Society Proceedings, vol 269, 1992.
    [3]Clark DE, Tinga WR, Laia JR Jr (Eds), “Microwaves : Theory and Applications in Materials Processing II,” Westervllle, Ohio, The American Ceramic Society, 1993.
    [4] W.H. Sutton, Am. Ceram. Soc. Bull. , vol68, no.2, 376–386, 1989.
    [5]David E. Clark , Diane C. Folz, Jon K. West, “Processing materials with microwave energy,” Materials Science and Engineering, A287, page.153-158,2000.
    [6] A.S. De’, I. Ahmad, E.D. Whitney, D.E. Clark, Mater. Res. Soc. Symp. Proc. 189, 283–288,1991.
    [7]Jiping Cheng, Dinesh Agrawal, Yunjin Zhang and Rustum Roy, “Microwave sintering of transparent alumina”, Materials Letters 56, 587– 592, October 2002.
    [8] Z. Fathi, I. Ahmed, J. H. Simmons, D. E. Clark, and A. R. Lodding, ‘‘Surface Modification of Sodium Aluminosilicate Glasses Using Microwave Energy,’’ Ceram.Trans., 21, 623–9,1991.
    [9] J. G. P. Binner, N. A. Hassine, and T. E. Cross, ‘‘The Possible Role of the Pre-Exponential Factor in Explaining the Increased Reaction Rates Observed During the Microwave Syntheses of Titanium Carbide,’’ J. Mater. Sci., 30, 5389–5393, 1995.
    [10] J. H. Booske, R. F. Cooper, I. Dobson, and L. McCaughan, ‘‘Model of Nonthermal Effects on Ionic Mobility During Microwave Processing of Crystalline Solids,’’ Ceram.Trans., 21, pp.185–192, 1991.
    [11] J. H. Booske, R. F. Cooper, L. McCaughan, S. Freeman, and M. Binshen, ‘‘Studies of Nonthermal Effect During Intense Microwave Heating of Crystalline Solids,’’ Mater. Res. Soc. Proc., 269, pp.137–143, 1992.
    [12] S. Freeman, J. H. Booske, R. F. Cooper, B. Meng, J. Kieffer, and B. J. Reardon, ‘‘Effects of High Power Microwave Fields on Ionic Transport in Ceramics and Ionic Crystalline Solids,’’Workshop on Microwave-Absorbing Materials for AcceleratorsProceedings, Edited by I. E. Campisi and L. R. Doolittle. Newport News, Virginia,pp.101-108, 1993.
    [13] K. I. Rybakov and V. E. Semenov, ‘‘Possibility of Plastic Deformation of an Ionic Crystal Due to the Nonthermal Influence of a High-Frequency Electric Field,’’ Phys. Rev. B, 49 [1],pp.64–68, 1994.
    [14] R. Wroe and A. T. Rowley, "Evidence for a non-thermal microwave effect in the sintering of partially stabilized zirconia," Journal of Materials Science, Volume 31, Number 8, pp.2019-2026, 1996
    [15] Rothman S J, " Microwave Processing of Materials IV, " Pittsburgh, USA MRS, Materials Research Society Proceedings, vol 347, 1994.
    [16] A. T. Rowley, R. Wroe and D. Vázquez-Navarro, "Microwave-assisted oxygenation of melt-processed bulk YBa2Cu3O7-δ ceramics," Journal of Materials Science, Vol. 32, page 4541-4547, September 1 1997.
    [17]Joel D. Katz, “Microwave Sintering of Ceramics,” Annual Review of Materials Science, vol. 22, pp.153-170, 1992.
    [18] Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, K. I. Rybakov, V. E. Semenov, A. A. Sorokin, "Evidence for microwave enhanced mass transport in the annealing of nanoporous alumina membranes," Journal of Materials Science, Vol. 36, Issue 1, p131-136, January 1 2001.
    [19]Sharon A. Nightingale, H. K. Worner, and D. P. Dunne, “Microstructural Developement during the Microwave Sintering of Yttria-Zirconia Ceramics,” J. Am. Ceram. Soc., vol. 80, page394-400, 1997.
    [20]Chien-YihTsay, Kuo-Shung Liu, I.-Nan Lin," Co-firing process using conventional and microwave sintering technologies for MnZn- and NiZn-ferrites ," Journal of the European Ceramic Society 21,pp.1937–1940, 2001.
    [21] Jiping Cheng, Dinesh Agrawal, Yunjin Zhang &Rustum Roy, " Development of Translucent Aluminum Nitride (AIN) Using Microwave Sintering Process ," Journal of Electroceramics, vol. 9, page.67–71, 2002.
    [22] Y. Fang, Y. Chen, M.R. Silsbee, D.M. Roy, " Microwave sintering of flyash ," Materials Letters 27,pp.155-159, 1996.
    [23] T. H. Chang, H. W. Chao, F. H. Syu, W. Y. Chiang, S. C. Fong, and T. S. Chin, "Efficient heating with a controlled microwave field," Review of Scientific Instruments,vol. 82, no. 12, 2011.
    [24] NishkaranGunasekaran, “Effect of Fat Content and Food Type on Heat Transfer during Microwave Heating,” Master’s Thesis , 8 Aug., 2002.
    [25]Kenneth W. Watkins, “Heating in Microwave Ovens : An Example of Dipole Moments In Action,” Journal of Chemical Education, December 1983.
    [26]J. H. Booske, R. F. Cooper, I. Dobson, and L. McCaughan, “Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids,” J. Mater. Res., Vol. 7, No. 2, Feb 1992.
    [27]S.A. Freeman, J.H. Booske, and R. F. Cooper, “Microwave Field Enhancement of Charge Transport in Sodium Chloride,” Physical Review Letters, vol.74, No.11, page 2042-2045, March 13, 1995.
    [28] J. H. Booske, R. F. Cooper, S. A. Freeman, K. I. Rybakov and V. E. Semenov, " Microwave ponderomotive forces in solid-state ionic plasmas ," Physics of Plasmas, vol. 5, no. 5, May 1998.
    [29] S. A. Freeman, J. H. Booske, R. F. Cooper, and B. Meng, ‘‘Microwave Radiation Effects on Ionic Current in Ionic Crystalline Solids,’’ Mater. Res. Soc.Proc., vol. 347, pp.479–485, 1994.
    [30] F. C. R. Wroe and A. T. Rowley, ‘‘Microwave Enhanced Sintered of Ceramics,’’ Ceram. Trans., vol. 59, pp.69–76,1995.
    [31] M. A. Janney and H. D. Kimrey, “Microwave Processing of Materials II,” Materials Research Society, Pittsburgh, page 215-217, 1991.
    [32]Z. Fathi, D. E. Clark, and R. Hutcheon, “Microwave Processing of Materials III,” Materials Research Society, Pittsburgh, page 347-351, 1992.
    [33]Yu V Bykov, K I Rybakov and V E Semenov, “High-temperature microwave processing of materials,” Journal of Physics D: Applied Physics, Vol. 34, No. 13, page R55, 2001.
    [34] KI Rybakov, VE Semenov, SV Egorov and AG Eremeev, ” Microwave heating of conductive powder materials,” Journal of Applied Physics, Vol.99, page 023506, 2006.
    [35] K. I. Rybakov, V. E. Semenov, G. Link and M. Thumm, “Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field,” Journal of Applied Physics, Vol.11, Issue 8, 2007.
    [36] C.Zhao, J.Vleugels, C.Groffils, P.J.Luypaert, O. Van Der Biest, “Hybrid sintering with a tubular susceptor in a cylindrical single-mode microwave furnace,” ActaMaterialia, Vol. 48, issue 14, page 3795, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE