研究生: |
黃偉倫 Huang, Wei-Lun |
---|---|
論文名稱: |
利用電漿子螺旋溝槽產生並塑形近場光漩渦 Generation and shaping of near-field optical vortices using plasmonic spiral and slot |
指導教授: |
黃承彬
Huang, Chen-Bin |
口試委員: |
李佳翰
Li, Jia-Han 黃哲勳 Huang, Jer-Shing |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 奈米電漿子 、表面電漿 、光漩渦 、阿基米德螺旋 、近場量測 |
外文關鍵詞: | nanoplasmonics, surface plasmon, optical vortex, Archimedes spiral, near-field mearsurement |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用有限差分時域法模擬表面電漿的光漩渦現象,其中描述光漩渦基本性質的參數為光漩渦的拓樸荷數,其決定在 方位角內電場相位奇異的數量。影響表面電漿光漩渦拓樸荷數有兩個主要因素,一個為決定電漿子螺旋元件幾何結構的幾何荷數,另一個為入射此元件的平面波圓偏振態光內的光子自旋角動量。本論文探討兩者之間的關係,分析空間中表面電漿光漩渦分佈的基本特性。此外,創新的改變電漿子螺旋元件的結構分佈,可以適當的控制近場光漩渦在空間中的強度分佈,且不改變表面電漿光漩渦的拓樸荷數及其本身的性質。
實驗上,樣品製作以熱蒸鍍鍍製金屬薄膜至蓋玻片基板,再以聚焦離子束磨銑出電漿子螺旋微結構。近場光學量測方面,本論文利用一自行架設的收集式近場掃描光學顯微鏡,搭配垂直入射激發樣品之光路,以及剪切力回饋的掃描方式量測電漿子螺旋元件產生出表面電漿光漩渦的近場訊號。最後將近場量測數據與模擬數據作比較與分析,得到非常相似的結果證實電漿子螺旋元件設計原理的正確性。
In this work, we use finite-difference time-domain method to simulate the optical vortex phenomenon of surface plasmons. An optical vortex is characterized by its topological charge, which denotes the number of phase singularities within a 2 azimuthal rotation. There are two main factors can influence the topological charge of surface plasmon vortex: one is the geometrical charge which can determine the geometry of plasmonic spiral device, another is the spin angular momentum of the photon of the incident circularly polarized plane wave. We analyze the basic property of surface plasmon vortex distributions in space by studying the relationship between these two factors. Furthermore, we change the structure arrangement of plasmonic spiral device in a novel way that can adaptively control the intensity distributions of the surface plasmon vortex in space without changing the topological charge and the basic property of the surface plasmon vortex.
In the aspect of sample fabrication, we use thermal evaporation to deposit the metallic film upon to the cover glass substrate. Then we use focused ion beam to mill the micro structure of plasmonic spiral device. In the aspect of near-field measurement, we use collection mode near-field scanning optical microscope with normal incident set-up and the shear force feedback scanning method to obtain the near-field signal of surface plasmon vortex, which is generated from the plasmonic spiral device. Finally, we compare the experimental data with the simulation result. Similar phenomenon can verify the correctness of the design principle of plasmonic spiral device.
1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine 4, 396-402 (1902).
2. U. Fano, "Some theoretical considerations on anomalous diffraction gratings," Physical Review 50, 573-573 (1936).
3. U. Fano, "On the anomalous diffraction gratings II," Physical Review 51, 288-288 (1937).
4. U. Fano, "On the theory of the intensity anomalies of diffraction," Annalen Der Physik 32, 393-443 (1938).
5. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America 31, 213-222 (1941).
6. R. H. Ritchie, "PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS," Physical Review 106, 874-881 (1957).
7. H. A. Atwater, "The promise of plasmonics," Scientific American 296, 56-63 (2007).
8. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters 81, 1714-1716 (2002).
9. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Physical Review B 67 (2003).
10. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Applied Physics Letters 86 (2005).
11. D. Woolf, M. Loncar, and F. Capasso, "The forces from coupled surface plasmon polaritons in planar waveguides," Optics Express 17, 19996-20011 (2009).
12. C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, "Broadband integrated polarization beam splitter with surface plasmon," Optics Letters 36, 3630-3632 (2011).
13. J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, "Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits," Physical Review B 79 (2009).
14. P. N. Li, H. H. Tsao, J. S. Huang, and C. B. Huang, "Subwavelength localization of near fields in coupled metallic spheres for single-emitter polarization analysis," Optics Letters 36, 2339-2341 (2011).
15. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
16. J. I. Ziegler, and R. F. Haglund, "Plasmonic Response of Nanoscale Spirals," Nano Letters 10, 3013-3018 (2010).
17. L. Li, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, "Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons," Nano Letters 11, 4357-4361 (2011).
18. Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, "Plasmonic Focusing in Symmetry Broken Nanocorrals," Nano Letters 11, 893-897 (2011).
19. G. H. Yuan, X. C. Yuan, J. Bu, P. S. Tan, and Q. Wang, "Manipulation of surface plasmon polaritons by phase modulation of incident light," Optics Express 19, 224-229 (2011).
20. T. Ohno, and S. Miyanishi, "Study of surface plasmon chirality induced by Archimedes' spiral grooves," Optics Express 14, 6285-6290 (2006).
21. S. Y. Yang, W. B. Chen, R. L. Nelson, and Q. W. Zhan, "Miniature circular polarization analyzer with spiral plasmonic lens," Optics Letters 34, 3047-3049 (2009).
22. W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, "Experimental Confirmation of Miniature Spiral Plasmonic Lens as a Circular Polarization Analyzer," Nano Letters 10, 2075-2079 (2010).
23. Y. J. Han, and G. H. Zhao, "Measuring the topological charge of optical vortices with an axicon," Optics Letters 36, 2017-2019 (2011).
24. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, "Synthesis and Dynamic Switching of Surface Plasmon Vortices with Plasmonic Vortex Lens," Nano Letters 10, 529-536 (2010).
25. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, "Observation of the spin-based plasmonic effect in nanoscale structures," Physical Review Letters 101 (2008).
26. P. S. Tan, G. H. Yuan, Q. Wang, N. Zhang, D. H. Zhang, and X. C. Yuan, "Phase singularity of surface plasmon polaritons generated by optical vortices," Optics Letters 36, 3287-3289 (2011).
27. N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, "Spin-dependent plasmonics based on interfering topological defects," Nano Lett 12, 1620-1623 (2012).
28. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES," Optics Letters 11, 288-290 (1986).
29. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, "Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink," Nature Communications 2 (2011).
30. M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, "Light-driven nanoscale plasmonic motors," Nature Nanotechnology 5, 570-573 (2010).
31. M. L. Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics 5, 349-356 (2011).
32. A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, "Optical vortices and vortex solitons," Progress in Optics, Vol 47 47, 291-391 (2005).
33. Q. Zhan, "Cylinderical vector beams: from mathematical concepts to applications," Adv. Opt. Photon. 1, 1 (2009).
34. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phase plate," Opt. Commun. 112, 321-327 (1994).
35. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, "GENERATION OF OPTICAL-PHASE SINGULARITIES BY COMPUTER-GENERATED HOLOGRAMS," Optics Letters 17, 221-223 (1992).
36. X. M. Dong, X. Y. Weng, H. M. Guo, and S. L. Zhuang, "Generation of radially polarized beams using spatial light modulator," Optik 123, 391-394 (2012).
37. K. S. Yee, "NUMERICAL SOLUTION OF INITIAL BOUNDARY VALUE PROBLEMS INVOLVING MAXWELLS EQUATIONS IN ISOTROPIC MEDIA," Ieee Transactions on Antennas and Propagation AP14, 302-& (1966).
38. A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, There Edition (2005).
39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications 181, 687-702 (2010).
40. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics 37, 5271-5283 (1998).
41. E. D. Palik, Handbook of optical constants of solids (1985).