簡易檢索 / 詳目顯示

研究生: 張慶禾
Chang, Chen-He
論文名稱: 使用加壓CO2甲醇溶液對微藻溼藻體進行就地轉酯化反應製備生質柴油
In Situ Biodiesel Production from Wet Chlorella Vulgaris Using Compressed CO2 Methanol Solvent.
指導教授: 談駿嵩
Tan, Chung-Sung
口試委員: 蔣本基
Chiang, Pen-Chi
王竹方
Wang, Zhu-Fang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 二氧化碳加壓溶液生質柴油微藻就地轉酯化
外文關鍵詞: Compressed CO2 Methanol Solvent, Biodisel, microalgae, In situ transesterfication
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人類社會的高度發展,對於能源的需求與日俱增,然而化石燃料終有枯竭之日,因此尋找替代能源成為目前人類必須要面對的重要課題。在眾多再生能源當中,生質能源因其原物料容易取得以及技術成熟等,一直被視為極具潛力的再生能源之一。而目前生質柴油原物料選擇上,由於微藻具有高生長速率、易栽培以及高含油量等特性,成為目前最被重視的研究主題之一。
    本研究使用之原物料為國立成功大學培養之Chlorella vulgaris的濕藻體,採用加壓CO2甲醇溶夜(Compressed CO2 methanol)的方法進行就地轉酯化反應(In-situ transesterification)製備生質柴油,並討論溫度、壓力、時間、轉速、含水量和醇油比等六個變因對脂肪酸甲酯(FAMEs)產率的影響。接著以實驗設計反應曲面法進行最加化的探討,得到在微藻添加量20 g、醇油莫耳比64:1、含水量20 %、溫度199 oC、壓力2255 psi、反應時間220.9 min可以得到最高70.09 %的產率。
    完成實驗設計後進行兩階段萃取轉酯化反應的實驗,其發想自二氧化碳膨脹液體萃取偏好低溫條件而反應需要高溫才可進行,因此設計了兩段不同之操作條件以期得到更好的效果,並於實驗過程中發現在215 oC左右會有一溫度下滑的曲線,經實驗驗證其為轉酯化反應開始大量進行的門檻。
    雖然現階段的成果與傳統的兩步驟製程相比,本研究方法製備生質柴油的產率無明顯優勢,但是以直接使用溼藻體進行轉酯化反應生成生質柴油之製程,除了擁有減少製程的步驟、不使用均相催化劑省去了後處理的麻煩之外,最大的優點為不需要任何額外的破壁步驟,對於含水量的要求也不像傳統製成需要接近無水的程度,減少了去水步驟消耗的大量能耗,因此可視為一具發展潛力之綠色製程。


    With the rapid development of human society, the demand for energy is increasing day by day. However, fossil fuels have finally dried up, finding alternative energy has become an important subject that mankind must face at present. Among many renewable energy sources, biomass has been regarded as one of the most promising renewable energy because of its easy access to raw materials and technology maturity. With high growth rate, easy cultivation and high oil content, microalgae have become a good selection of raw materials for biomass and one of the most important research topics at present.
    In this study, we use the wet algae of Chlorella Vulgaris cultivated by the National Cheng Kung University as raw materials. By using compressed CO2 Methanol Solvent, we can produce biodiesel directly in one-pot, including disrupting cell wall, extracting lipid and reaction. There are six factors were discussed in this research involving temperature, pressure, time, speed, water content, and alcohol ratio. For modifying the yield of fatty acid methyl ester (FAME), experiment design(DOE) was used to find out the best operation condition. The optimum conditions are as follows: microalgae 20 g, the molar ratio of the methanol to the lipid 64:1, moisture 20%, 199 oC, 2255 psi, and 220.9 min, the highest yield:70.09% of methyl ester was obtained.
    After finding out the best operation condition, the two-stage extraction and transesterification reaction was carried out. Carbon dioxide expansion liquid extraction preferred low-temperature conditions and the reaction required high temperature, therefore two different operating conditions were designed to obtain better results. From the operation temperature curve, we found that about 215 oC will have a temperature drop curve. Based on the experimental data it was verified that a large amount of transesterification reaction carried out around the condition.
    Although the yield of this research compared with the traditional process has no obvious advantage, in situ biodiesel production from wet Chlorella Vulgaris using compressed CO2 methanol solvent can decrease the operation unit, carry out transesterification without homogeneous catalyst which reduce the amount of waste water and able to deal with high moisture resource which traditional process can’t handle it. It means that the study can save energy Consumption of pretreatment and post-treatment. The in situ transesterification of wet microalgae biomass had the potential to provide an energy efficient and economical route to microalgae biodiesel production.

    摘要 2 Abstract 3 謝誌 I 目錄 II 第一章 緒論 1 1-1 前言 1 第二章 文獻回顧 3 2-1 微藻生質能源發展 3 2-2 微藻前處理技術 8 2-2.1物理性前處理 8 2-2.2化學性前處理 9 2-2.3生物性前處理 10 2-2.4 超臨界CO2前處理 10 2-3 微藻萃取技術 14 2-4 生質柴油製備 21 2-5 超臨界轉酯化 25 2-6生質柴油製程整合 27 第三章 實驗裝置與操作流程 29 3-1 實驗流程及操作說明 29 3-1.1 索氏萃取 30 3-1.2使用加壓CO2甲醇溶液對微藻溼藻體進行就地轉酯化反應 31 3-1.3 後處理 32 3-1.4 產物分析 33 3-2 實驗儀器 33 3-3 實驗藥品 34 第四章 實驗結果與討論 35 4-1 微藻含油量分析 35 4-2 FAMEs產物分析 36 4-3 同步萃取轉酯化反應 40 4-3.1微藻量效應 40 4-3.2醇油比效應 40 4-3.3含水量效應 42 4-3.4壓力效應 46 4-3.5溫度效應 47 4-3.6時間效應 49 4-3.7攪拌效應 50 4-4 以實驗設計探討最佳化條件 51 4-5 二階段同步萃取轉酯化反應 58 第五章 結論與建議 67 第六章 參考文獻 69

    Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C., Lim J. K., 2011. Microalgae As a Sustainable Energy Source for Biodiesel Production: A Review. Renewable and Sustainable Energy Reviews 15, 584-593.
    Anastopoulos, G., Zannikou, Y., Stournas S., Kalligeros, S., 2009. Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters. Energies 2, 362-376.
    Andrich, G., Nesti, U., Venturi, F., Zinnai, A., Fiorentini, R. 2005. Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur. J. Lipid Sci. Technol. 107, 381–386.
    Araujo, G.S., Matos, L.J.B.L., Fernandes, J.O., Cartaxo, S.J.M., Gonçalves, L.R.B., Fernandes, F.A.N., Farias, W.R.L., 2013. Extraction of Lipids from Microalgae by Ultrasound Application: Prospection of The Optimal Extraction Method. Ultrasonics Sonochemistry 20, 95-98.
    Ayhan, D., 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management. 44, 2093–2109
    Bahadar, A., Khan, M. B., 2013. Progress in Energy from Microalgae: A Review. Renewable and Sustainable Energy Reviews 27, 128-148
    Balasubramanian, S., Allen, J.D., Kanitkar, A., Boldor, D. 2011. Oil extraction from Scenedesmus obliquus using a continuous microwave system-design, optimization, and quality characterization. Bioresour. Technol. 102, 3396–3403.
    Billaud, F., Dominguez, V., Broutin, P., Busson, C., 1995. Production of Hydrocarbons by Pyrolysis of Methyl Esters from Rapeseed Oil. Journal of the American Oil Chemists' Society 72, 1149-1154.
    Boyd, A.R., Champagne, P., Mcginn, P.J., Macdougall, K.M., Melanson, J.E., Jessop, P.G., 2012. Switchable Hydrophilicity Solvents for Lipid Extraction from Microalgae for Biofuel Production. Bioresource Technology 118, 628-632.
    Cao, H., Zhang, Z., Wu, X., Miao, X., 2013. Direct biodiesel production from wetmicroalgae biomass of Chlorella pyrenoidosa through in situ transesterification.BioMed Res. Int., 1–6.
    Callejon, M.J.J., Medina, A.R., Sanchez, M.D.M., Pena, E.H., Cerdan, L.E., Moreno, A.G., Grima, E.M., 2014. Extraction of saponifiable lipids from wet microalgal biomass for biodiesel production. Bioresour. Technol. 169, 198–205.
    Cao, P., Tremblay, A.Y., Dubé, M.A., 2009. Kinetics of Canola Oil Transesterification in A Membrane Reactor. Industrial & Engineering Chemistry Research 48, 2533-2541.
    Cha, K.H., Kang, S.W., Kim, C.Y., Um, B. H., Na, Y.R., Pan, C.H. 2010 Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J. Agric. Food. Chem. 58, 4756-4761.
    Chen, K. T., Cheng, C. H., Wu, Y. H., Lu, W. C., Lin, Y. H., Lee, H. T., 2013. Continuous Lipid Extraction of Microalgae Using High-pressure Carbon Dioxide. Bioresource Technology 146, 23-26.
    Cheng, J., Yu, T., Li, T., Zhou, J., Cen, K., 2013. Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresour. Technol. 131, 531–535.
    Cho, S.-C., Choi, W.-Y., Oh, S.-H., Lee, C.-G., Seo, Y.-C., Kim, J.-S., Song, C.-H., Kim, G.-V., Lee, S.-Y., Kang, D.-H., Lee, H.-Y., 2012. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process. Journal of Biomedicine and Biotechnology. 6.
    Choi, S.A., Jung, J.Y., Kim, K., Lee, J.S., Kwon, J.H., Kim, S.W., Yang, J.W., Park, J.Y., 2014. Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioresour. Technol. 161, 469–472.
    Chuang, M.H., Johannsen, M., 2009. Characterization of pH in Aqueous CO2-Systems.
    Couto, R.M., Simões, P.C., Reis, A., Da Silva, T.L., Martins, V.H., Sánchez-Vicente, Y., 2010. Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng. Life Sci. 10, 158–164.
    Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., Cintas, P., 2008. Improved Extraction of Vegetable Oils under High-Intensity Ultrasound and/or Microwaves. Ultrasonics Sonochemistry 15, 898–902.
    Dassey, A.J., Hall, S.G., Theegala, C.S., 2014. An analysis of energy consumption for algal biodiesel production: Comparing the literature with current estimates. Algal Research 4, 89-95.
    Del Valle, J.M., De la Fuente, J.C., Cardarelli, D.A., 2005. Contributions to supercritical extraction of vegetable substrates in Latin America. J. Food Eng. 67, 35-57.
    Encinar, J. M., Gonzalez, J. F., Rodriguez, J. J., Tejedor, A., 2002. Biodiesel Fuels from Vegetable Oils: Transesterification of Cynara Cardunculus L. Oils with Ethanol. Energy & Fuels 16, 443-450.
    Fajardo AR., Cerdan LE., Medina AR., Fernandez FGA., Moreno PAG., Grima EM., 2007. Lipid extraction from the microalga Phaedactylum tricornutum. European Journal of Lipid Science Technology 109, 120-6.
    Gao, M.; Xu, F.; Li, S.; Ji, X.; Chen, S., Zhang, D., 2010. Effect of SC-CO2 Pretreatment in Increasing Rice Straw Biomass Conversion. Biosystems Engineering 106, 470-475.
    Grierson, S., Strezov, V., Bray, S., Mummacari, R., Danh, L.T., Foster, N., 2011. Assessment of Bio-Oil Extraction from Tetraselmis Chui Microalgae Comparing Supercritical CO2, Solvent Extraction, and Thermal Processing. Energy & Fuels 26, 248-255.
    Grimi, N., Dubois, A., Marchal, L., Jubeau, S., Lebovka, N. I., Vorobiev, E., 2014. Selective Extraction from Microalgae Nannochloropsis Sp. Using Different Methods of Cell Disruption. Bioresource Technology 153, 254-259.
    Guldhe, A., Singh, B., Rawat, I., Ramluckan, K., Bux, F., 2014. Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel 128, 46-52.
    Halim, R., Gladman, B., Danquah, M.K., Webley, P.A., 2011. Oil extraction from microalgae for biodiesel production. Bioresour. Technol. 102, 178-185.
    Halim, R., Danquah, M.K., Webley, P.A., 2012. Extraction of Oil from Microalgae for Biodiesel Production: A Review. Biotechnology Advances 30, 709-732.
    Halim, R., Rupasinghe, T.W.T., Tull, D.L., Webley, P.A., 2014. Modelling the kinetics of lipid extraction from wet microalgal concentrate: a novel perspective on a classical process. Chem. Eng. J. 242, 234-253.
    Harun, R., Danquah, M. K., 2011. Influence of Acid Pre-Treatment on Microalgal Biomass for Bioethanol Production. Process Biochemistry 46, 304-309.
    He, H., Wang, T., Zhu, S., 2007. Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 86, 442–447.
    Heldebrant, D.J., Li, X., Eckert, C.A., Liotta, C.L., Jessop, P.G., 2005. Green Chemistry Reversible Nonpolar-To-Polar Solvent. Nature 436, 1102-1102.
    Hernández, D., Solana, M., Riaño, B., García-González, M.C., Bertucco, A. 2014. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour. Technol. 170, 370-378.
    Herrero, M., Castro-Puyana, M., Mendiola, J.A. 2013. Compressed fluids for the extraction of bioactive compounds. TrAc-Trend. Anal. Chem. 43, 67-83.
    Hsin, C.W., Klinthong, W., Yang, Y.H., Tan, C.S. 2015 Continuous extraction of lipids from Schizochytrium sp. by CO2-expanded ethanol. Bioresour. Technol. 189, 162-168.
    Huang, Y., Hong, A., Zhang, D., Li, L., 2014. Comparison of Cell Rupturing by Ozonation and Ultrasonication for Algal Lipid Extraction from Chlorella Vulgaris. Environmental Technology 35, 931-937.
    Im, H.J., Lee, H.S., Park, M.S., Yang, J.W., Lee, J.W., 2014. Concurrent extraction and
    reaction for the production of biodiesel from wet microalgae. Bioresour. Technol. 152, 534–537.
    Jessop, P.G., Subramaniam, B., 2007. Gas-Expanded Liquids. Chemical Reviews 107, 2666-2694.
    Ji-Yeon Park., Min S. Park., Young-Chul Lee., Ji-Won Yang., 2015. Advances in direct transesterification of algal oils from wet biomass. Bioresource Technology 184, 267-275.
    Kim, K. H., Hong, J., 2001. Supercritical CO2 Pretreatment of Lignocellulose Enhances Enzymatic Cellulose Hydrolysis. Bioresource Technology 77, 139-144.
    Kusdiana, D., Saka, S., 2004. Effects of Water on Biodiesel Fuel Production by Supercritical Methanol Treatment. Bioresource Technology 91, 289-295.
    Kusdiana, D., Saka, S., 2004. Two-Step Preparation for Catalyst-Free Biodiesel Fuel Production. Applied Biochemistry and Biotechnology 115, 781-791.
    Lai, Y.S., Parameswaran, P., Li, A., Baez, M., Rittmann, B.E., 2014. Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus. Bioresour. Technol.
    Lee, Y.C., Huh, Y.S., Farooq, W., Han, J.I., Oh, Y.K., Park, J.Y., 2013b. Oil extraction by aminoparticle-based H2O2 activation via wet microalgae harvesting. RSC Adv. 3, 12802-12809.
    Lee, I., Park, J.Y., Choi, S.A., Oh, Y.K., Han, J.I., 2014a. Hydrothermal nitric acid treatment for effectual lipid extraction from wet microalgae biomass. Bioresour. Technol. 172, 138-142.
    Levine, R.B., Pinnarat, T., Savage, P.E., 2010. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification.Energy Fuels 24, 5235–5243.
    Li, Y., Naghdi, F.G., Garg, S., Catalina, T., Adarme-Vega, T.C., Thurecht, K.J., hafor, W.A., Tannock, S., Schenk, P.M. 2014. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb. Cell. Fact. 13, 14-22.
    Ma, Y.A., Cheng, Y.M., Huang, J.W., Jen, J.F., Huang, Y.S. Yu, C.C., 2014. Effects of Ultrasonic and Microwave Pretreatments on Lipid Extraction of Microalgae. Bioprocess and Biosystems Engineering 37, 1543-1549.
    Ma, Z., Shang, Z.-Y., Wang, E.-J., Xu, J.-C., Xu, Q.-Q., Yin, J.-Z., 2012. Biodiesel Production via Transesterification of Soybean Oil Using Acid Catalyst in CO2 Expanded Methanol Liquids. Industrial & Engineering Chemistry Research 51, 12199-12204.
    Makareviciene, V., Skorupskaite, V., Andruleviciute, V., 2013. Biodiesel Fuel from Microalgae-Promising Alternative Fuel for The Future: A Review. Reviews in Environmental Science and Bio/Technology 12, 119-130.
    Makareviciene, V., Lebedevas S., Rapalis, P., Gumbyte, M., Skorupskaite, V., Zaglinskis J., 2014. Performance and Emission Characteristics of Diesel Fuel Containing Microalgae Oil Methyl Esters, Fuel 120, 233-239.
    McMillan, J.R., Watson, I.A. Jaafar, M.A.W., 2013. Evaluation and Comparison of Algal Cell Disruption Methods: Microwave, Waterbath, Blender, Ultrasonic and Laser Treatment. Applied Energy 103, 128-134.
    Medina AR., Grima EM., Gimenez AG., Ibanez MJ., 1998. Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances 16(3), 517-80.
    Meng-Han Chuang and Monika Johannsen., 2009. Characterization of pH in Aqueous CO2-Systems. Institute of Thermal and Separation Processes.
    Miao, X., Wu, Q., 2006. Biodiesel Production from Heterotrophic Microalgal Oil. Bioresource Technology 97, 841-846.
    Michael, J., Haas, Wagner, K., 2011 Simplifying biodiesel production: The direct or in situ transesterification of algal biomass. Eur. J. Lipid Sci. Technol. 113, 1219–1229.
    Mouahid, A., Crampon, C., Toudji, S.-A.A., Badens, E., 2013. Supercritical CO2 Extraction of Neutral Lipids from Microalgae: Experiments and Modelling. The Journal of Supercritical Fluids. 77, 7-16.
    Nagle, N., Lemke, P. 1990. Production of methyl ester fuel from microalgae. Appl. Biochem. Biotechnol. 24, 355-361.
    Narayanaswamy, N., Faik, A., Goetz D. J. Gu, T., 2011 Supercritical Carbon Dioxide Pretreatment of Corn Stover and Switchgrass for Lignocellulosic Ethanol Production. Bioresource Technology 102, 6995-7000.
    Nurra, C., Torras, C., Clavero, E., Rios, S., Rey, M., Lorente, E., Farriol, X., Salvado, J., 2014. Biorefinery concept in a microalgae pilot plant. Culturing, dynamic filtration and steam explosion fractionation. Bioresour. Technol. 163, 136-142.
    Park, J.Y., Oh, Y.K., Lee, J.S., Lee, K., Jeong, M.J. Choi, S.A., 2014. Acid-Catalyzed Hot-Water Extraction of Lipids from Chlorella Vulgaris. Bioresource Technology. 153, 408-412.
    Park, J.Y., Nam, B., Choi, S.A., Oh, Y.K., Lee, J.S., 2014a. Effects of anionic surfactant on extraction of free fatty acid from Chlorella vulgaris. Bioresour. Technol. 166, 620-624.
    Park, J.Y., Park, M.S., Lee, Y.C., Yang, J.Y., 2015. Advances in direct transesterification of algal oils from wet biomass. Bioresource Technology. 184 267–275.
    Patil, P.D., Gude, V.G., Mannarswamy, A., Cooke, P., Nirmalakhandan, N., Lammers, P., Deng, S., 2012. Comparison of Direct Transesterification of Algal Biomass under Supercritical Methanol and Microwave Irradiation Conditions. Fuel 97, 822-831.
    Patil, P.D., Gude, V.G., Mannarswamy, A., Deng, S., Cooke, P., Munson-McGee, S.,
    Rhodes, I., Lammers, P., Nirmalakhandan, N., 2011b. Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour. Technol. 102, 118–122.
    Paudel, A., Jessop, M.J., Stubbins, S.H., Champagne, P., Jessop, P.G., 2015. Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2. Bioresour. Technol. 184, 286-290.
    Phan, D. T., Tan, C. S., 2014. Innovative Pretreatment of Sugarcane Bagasse Using Supercritical CO2 Followed by Alkaline Hydrogen Peroxide. Bioresource Technology 167, 192-197.
    Pieber, S., Schober, S., Mittelbach, M., 2012. Pressurized fluid extraction of polyunsaturated fatty acids from the microalga Nannochloropsis oculata. 47, 474-482.
    Pourmortazavi, S.M., Hajimirsadeghi, S.S., 2007. Supercritical fluid extraction in plant essential and volatile oil analysis. Journal of Chromatography A. 1163, 2–24.
    Ranjan, A., Patil, C. Moholkar, V.S., 2010. Mechanistic Assessment of Microalgal Lipid Extraction. Industrial & Engineering Chemistry Research 49, 2979–2985.
    Reddy, H. K., Muppaneni, T., Patil, P. D., Ponnusamy, S., Cooke, P., Schaub, T., Deng, S., 2014. Direct Conversion of Wet Algae to Crude Biodiesel under Supercritical Ethanol Conditions. Fuel 115, 720-726.
    Reverchon, E., 1997. Supercritical Fluid Extraction and Fractionation of Essential Oils and Related Products. The Journal of Supercritical Fluids 10, 1-37.
    Reverchon, E., De Marco, I., 2006. Supercritical Fluid Extraction and Fractionation of Natural Matter. The Journal of Supercritical Fluids 38, 146-166.
    Ronald Halim., Michael K. Danquah., Paul A. Webley., 2012. Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances 30, 709-732.
    Rodriguez-Meizoso, I., Jaime, L., Santoyo, S., Cifuentes, A., Reina, G.G.B., Senorans, F.J., Ibanez, E. 2008. Pressurized fluid extraction of bioactive compounds from Phormidium species. J. Agric. Food. Chem. 56, 3517-3523.
    Sajilata, M., Singhal, R.S., Kamat, M.Y. 2008. Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. J. Food Eng. 84, 321-326.
    Saka, S., Isayama, Y., 2009. A New Process for Catalyst-Free Production of Biodiesel Using Supercritical Methyl Acetate. Fuel 88, 1307-1313.
    Saka, S., Kusdiana, D., 2001. Biodiesel Fuel from Rapeseed Oil as Prepared in Supercritical Methanol. Fuel 80, 225-231.
    Samarasinghe, N., Fernando, S., Lacey, R., Faulkner, W.B., 2012. Algal Cell Rupture Using High Pressure Homogenization as A Prelude yo Oil Extraction. Renewable Energy 48, 300-308.
    Samorì, C., Torri, C., Samorì, G., Fabbri, D., Galletti, P., Guerrini, F. 2010. Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour. Technol. 101, 3274-3279.
    Samori, C., Lopez Barreiro, D., Vet, R., Pezzolesi, L., Brilman, D.W.F., Galletti, P., Tagliavini, E., 2013. Effective Lipid Extraction from Algae Cultures Using Switchable Solvents. Green Chemistry 15, 353-356.
    Santos, A. L. F.; Kawase, K. Y. F. Coelho, G. L. V., 2011. Enzymatic Saccharification of Lignocellulosic Materials after Treatment with Supercritical Carbon Dioxide. The Journal of Supercritical Fluids 56, 277-282.
    Sathish, A., Sims, R.C., 2012. Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour. Technol. 118, 643-647.
    Schwab, A.W., Bagby, M.O., Freedman, B., 1987. Preparation and Properties of Diesel Fuels from Vegetable Oils. Fuel 66, 1372-1378.
    Schwartzberg, H.G., 1997. Mass transfer in a countercurrent, supercritical extraction system for solutes in moist solids. Chemical Engineering Communications 157, 1-22.
    Silva, C., Soliman, E., Cameron, G., Fabiano, L. A., Seider, W. D., 2014. Commercial-Scale Biodiesel Production from Algae. Industrial & Engineering Chemistry Research 53, 5311-5324.
    Singh, A., Nigam, P.S., Murphy, J.D., 2011. Renewable Fuels from Algae: An Answer to Debatable Land Based Fuels. Bioresource Technology 102, 10-16.
    Slade, R., Bauen, A., 2013. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. biomass and bioenergy 53, 29-38.
    Smith, B., Greenwell, H.C., Whiting, A., 2009. Catalytic Upgrading of Tri-Glycerides and Fatty Acids to Transport Biofuels. Energy & Environmental Science 2, 262-271.
    Souza Silva, A.P.F., Costa, M.C., Lopes, A.C., Neto, E.F.A., Leitao, R.C., Mota, C.R., Santos, A.B., 2014. Comparison of pretreatment methods for total lipids extraction from mixed microalgae. Renewable Energy 63, 762–766.
    Srivastava, A., Prasad, R., 2000. Triglycerides-Based Diesel Fuels. Renewable and Sustainable Energy Reviews 4, 111-133.
    Srinivasan, N., Ju, L.-K., 2010. Pretreatment of Guayule Biomass Using Supercritical Carbon Dioxide-Based Method. Bioresource Technology 101, 9785-9791.
    Srinivasan, N., Ju, L.-K., 2012. Statistical Optimization of Operating Conditions for Supercritical Carbon Dioxide-Based Pretreatment of Guayule Bagasse. Biomass & Bioenergy 47, 451-458.
    Steriti, A., Rossi, R., Concas, A., Cao, G., 2014. A novel cell disruption technique to enhance lipid extraction from microalgae. Bioresour. Technol. 164, 70–77.
    Suarsini, E., Subandi, S. 2011. Utilization ultrasonic to increase the efficiency of oil extraction for microalgae indigenous isolates from pond gresik, east java. In: Proceedings of the 2011 IEEE first conference on clean energy and technology (CET). 275–279.
    Taher, H., Al-Zuhair, S., Al-Marzouqi, A.H., Haik, Y., Farid, M., Tariq, S. 2014. Supercritical carbon dioxide extraction of microalgae lipid: process optimization and laboratory scale-up. J. Supercrit. Fluids 86, 57–66.
    Tran, D.T., Chen, C.L., Chang, J.S., 2013. Effect of solvents and oil content on direct
    transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour. Technol. 135, 213–221.
    Umdu, E.S., Tuncer, M., Seker, E., 2009. Transesterification of Nannochloropsis Oculata Microalga’S Lipid to Biodiesel on Al2O3 Supported CaO and MgO Catalysts. Bioresource Technology 100, 2828-2831.
    Hsin-Chih Wang., Worasaung Klinthong,. Yi-Hung Yang,. Chung-Sung Tan. 2015. Continuous extraction of lipids from Schizochytrium sp. by CO2-expanded ethanol. Bioresource Technology 189, 162-168.
    Velasquez-Orta, S.B., Lee, J.G.M., Harvey, A.P., 2013. Evaluation of FAME production from wet marine and freshwater microalgae by in situ transesterification. Biochem. Eng. J. 76, 83–89.
    Warabi, Y., Kusdiana, D., Saka, S., 2004. Reactivity of Triglycerides and Fatty Acids of Rapeseed Oil in Supercritical Alcohols. Bioresource Technology 91, 283-287.
    Yi-Hung Yang, Worasaung Klinthong, Chung-Sung Tan. 2015. Optimization of continuous lipid extraction fromChlorella vulgarisby CO2-expanded methanol for biodiesel production. Bioresource Technology 198, 550-556.
    Yoo, G., Yoo, Y., Kwon, J.H., Darpito, C., Mishra, S.K., Park, K., Park, M.S., Im, S.G., Yang, J.W., 2014. An effective, cost-efficient extraction method of biomass from wet microalgae with a functional polymeric membrane. Green Chem. 16, 312–319.
    Yusoff, M. F. M., Xu, X., Guo, Z., 2014. Comparison of Fatty Acid Methyl and Ethyl Esters as Biodiesel Base Stock: a Review on Processing and Production Requirements. Journal of the American Oil Chemists' Society 91, 525-531.
    Zheng, H., Yin, J., Zhen, G., Haung, H., Ji, X., Dou, C., 2011. Disruption of Chlorella Vulgaris Cells for The Release of Biodiesel-Producing Lipids: a Comparison of Grinding, Ultrasonication, Bead Milling, Enzymartic Lysis, and Microwave. Applied Biochemistry and Biotechnology 164, 1215–1224.
    Zheng, Y.; Lin, H.-M., Tsao, G.T., 1998. Pretreatment for Cellulose Hydrolysis by Carbon Dioxide Explosion. Biotechnology Progress 14, 890-896.
    林華經, “以超臨界流體技術製備升質柴油及改善電阻式隨機存取記憶體的效能” ,國立清華大學,博士論文,2015年。
    洪英哲, “超臨界流體轉酯化反應製備生質柴油” ,國立清華大學,碩士論文,2008年。

    QR CODE