研究生: |
潘婉君 Pan, Wan-Chun |
---|---|
論文名稱: |
以同步輻射光源結合雷射技術研究1D能態硫原子的自游離態、光解有機硫化物產物硫原子的分支比以及氙分子的高激發雷德堡能態 |
指導教授: |
陳益佳
Chen, I-Chia 李英裕 Lee, Yin-Yu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 160 |
中文關鍵詞: | 自游離態 、雷德堡能態 、氙分子 、硫原子 、分支比 |
外文關鍵詞: | autoionization, Rydberg states, xenon collision dimer, siglet D sulfur, branching ratio |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用同步輻射的VUV光源結合雷射技術研究1D2硫原子收斂在游離極限S+(2D03/2,5/2) 的自游離態,由1D2硫原子躍遷至自游離雷德堡系列: 3s23p3(2D03/2) nd[3/2] 以及 3s23p3(2D05/2) ns[5/2],分別將其主量子數n推進到 16 和32,也指認了n = 5-9 的 3s23p3(2D03/2) nd[1/2]1 與 (2D05/2) nd[5/2] 兩個雷德堡系列,以及新系列 (2D03/2) nd[5/2],n = 7-13。能量在 85 335 cm-1 的未知譜線則根據量子缺陷被指認為 3s23p3(2D03/2) 6d 1P。由已指認的1D2硫原子的自游離態光譜,決定了二硫化碳、環硫乙烯以及環硫三亞甲基經193 nm光解後,產物硫原子在3P及1D之分支比S(3P)/S(1D),分別為2.67±0.47、1.34±0.11以及0.85±0.04,在環硫三亞甲基光解反應中,證實有3P能態硫原子產生,可能經由激態能量轉移至三重態位能面而來。結合同步輻射光源及紅外光雷射,研究氙分子之高激發雷德堡能態,利用高解析度同步輻射光源選擇高能態氙原子,經碰撞形成激發態氙分子,以紅外光雷射激發到自游離能態後分解形成 Xe + Xe+ + e-,經偵測氙離子可獲得在84 000-86 000 cm-1能量範圍內的氙分子雷德堡態,光譜有19個氙分子譜帶被觀測到,對應氙分子譜帶與原子譜線,這些譜帶的解離極限可能在 Xe* 7p, 6d與 6p’能態。
1. Y. N. Joshi, M. Mazzoni, A. Nencioni, W. H. Parkinson, and A. Cantu, J. Phys. B 20, 1203 (1987)
2. A. L. Broadfoot, B. R. Sandel, D. E. Shemansky, J. C. McConnell, G. R. Smith, J. B. Holberg, S. K. Atreya, T. M. McDonahue, D. F. Strobel, and J. L. Bertaux, J. Geophys. Res. 86, 8259 (1981).
3. D. E. Shemansky and G. R. Smith, J. Geophys. Res. 86, 9179 (1981).
4. L. Goldberg, E. A. Muller, and L. H. Aller, Astrophys. J. 5, 1 (1960).
5. R. D. Chapman and R. J. W. Henry, Astrophys. J. 168, 169 (1971).
6. M. J. Connelly, K. Snith, and L. Lipsky, J. Phys. B 3, 493 (1970).
7. D. Dill, A. F. Starace, and S. T. Manson, Phys. Rev. A 11, 1956 (1975).
8. S. T. Manson, A. Msezane, A. F. Starace, and S. Shahabi, Phys. Rev. A 20, 1005 (1979).
9. E. J. Mcguire, Phys. Rev. A 19, 1978 (1979).
10. C. T. Chen and F. Robicheaux, Phys. Rev. A 50, 3968 (1994).
11. C. Mendoza, TOPbase/Tipbase, Atomic and Molecular Data and Their Applications, edited by K. A. Berrington and K. L. Bell (American Institute of Physics, USA (2000), p. 313, available online http://vizier.u-strasbg.fr/topbase/topbase.html).
12. Z. Altun, J. Phys. B 25, 2279 (1992).
13. G. Tondello, Astrophys. J. 172, 771 (1972).
14. V. N. Sarma and Y. N. Joshi, Physica B & C 123, 349 (1984).
15. S. T. Gibson, J. P. Greene, B. Ruscic, and J. Berkowitz, J. Phys. B 19, 2825 (1986).
16. S. T. Pratt, Phys. Rev. A 38, 1270 (1988).
17. U. Fano, Phys. Rev. 124, 1866 (1961).
18. U. Fano and J. W. Cooper, Phys. Rev. 137, A1364 (1965).
19. F. Innocenti, L. Zuin, M. L. Costa, A. A. Dias, A. Morris, S. Stranges, and J. D. Dyke, J. Chem. Phys. 126, 154310 (2007).
20. J. Huang, D. D. Xu, A. Stuchebrukhov, and W. M. Jackson, Can. J. Chem. 82, 885 (2004); J. Chem. Phys. 122, 144321 (2005).
21. T. F. Gallagher, Rydberg Atoms (Cambridge University Press, New York USA, 1994).
22. D. D. Xu, J. H. Huang, and W. M. Jackson, J. Chem. Phys. 120, 3051 (2004).
23. J. G. Zhou, K. C. Lau, E. Hassanein, H. F. Xu, S. X. Tian, B. Jones, and C. Y. Ng, J. Chem. Phys. 124, 034309 (2006).
24. J. G. Zhou, B. Jones, X. L. Yang, W. M. Jackson, and C. Y. Ng, J. Chem. Phys. 128, 014305 (2008).
25. X. L. Yang, J. G. Zhou, B. Jones, C. Y. Ng, and W. M. Jackson, J. Chem. Phys. 128, 084303 (2008).
26. Y. F. Song, P. C. Tseng, L. R. Huang, S. C. Chung, T. E. Dann, C. T. Chen, and K. L. Tseng, Nucl. Intrsum. Methods Phys. Res. A, 467, 496 (2001).
27. Y. Ralchenko, F.-C. Jou, D. E. Kelleher, A. E. Kramida, A. Musgrove, J. Reader, W. L. Wiese, and K. Olsen, NIST Atomic Spectra Database Data, version 3.0, National Institute of Standards and Technology, Gaithersburg, USA, 2007, (http://physics.nist.gov/asd2).
28. A. Mank, C. Starrs, M. N. Jego, and J. W. Hepburn, J. Chem. Phys. 104, 3609 (1996).