簡易檢索 / 詳目顯示

研究生: 柯景文
Ke, Jing-Wen
論文名稱: 考慮多目標功率控制在直序展頻分碼多工通訊系統
Multiobjective Power Control in DS-CDMA Cellular System
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 陳博現
楊昌益
林澤
何天讚
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 40
中文關鍵詞: 多目標問題線性矩陣不等式功率控制直序展頻分碼多重存取
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In direct-sequence code division multiple access (DS-CDMA) cellular system, tight power control is used to deal with near-far problem. In order to track a desired signal-to-interference-plus-noise-ratio (SINR), a state-space model is developed and a state feedback controller is taken into consideration for the optimal SINR tracking control. Hence, the optimal SINR tracking problem can be regarded as the single-objective (SO) H2 control problem. However, in order to overcome round-trip delay, channel fading and noises, the H-infinity control is used to efficiently attenuate these interferences to achieve robust SINR tracking. Hence, we propose the multiobjective (MO) H2/H-infinity power control for DS-CDMA cellular system in this paper.
    In this study, the proposed multiobjective H2/H-infinity tracking control can achieve the optimal SINR tracking and optimal interference rejection simultaneously. However, the considered multiobjective H2/H-infinity tracking control is a difficult design problem, and is not easy to solve directly. Hence, we minimize the upper bounds of both objectives to solve the multiobjective H2/H-infinity tracking problem from the suboptimal viewpoint. This MO H2/H-infinity tracking control problem is transformed to minimizing two upper bounds under three bilinear matrix inequality (BMI) constraints, a BMIs-constrained MO problem (MOP). By applying the linear matrix inequality (LMI) toolbox in matlab and evolutionary algorithm, we can obtain the multiple solutions called Pareto optimal solutions for designer selection. Numerical simulation has been given to illustrate the design procedure to confirm the performance of the proposed MO H2/H-infinity power control for DS-CDMA cellular system.


    在直序展頻分碼多重存取系統中,嚴格的功率控制可以用來處理通訊時所造成的遠近效應。為了去追蹤期望的訊號對干擾及雜訊比例,開發一個狀態空間模型並考慮狀態回授控制器用在最佳的訊號對干擾及雜訊比例的追蹤控制上。因此,最佳的訊號對干擾及雜訊比例追蹤問題可以視為單一目標的H2控制問題。然而,為了去克服通訊時會產生的來回通訊延遲、通道衰減與雜訊干擾,H-infinity控制可以有效率來減弱上述的干擾來達到強健的訊號對干擾及雜訊比例追蹤。因此在本篇論文,我們提出多目標H2/H-infinity功率控制用在直序展頻分碼多重存取系統。在本篇論文裡,所提出的多目標H2/H-infinity追蹤控制可以同時的達到最佳訊雜比追蹤與最佳抗干擾。然而,這個多目標H2/H-infinity追蹤控制是一個困難設計問題而且不容易直接去解決。因此,我們從求次優解的觀點去解決多目標H2/H-infinity追蹤問題藉由讓這個兩個目標的上界值達到越小越好。這個多目標H2/H-infinity追蹤問題就轉換成滿足一些雙線性矩陣不等式約束條件來使得這兩個目標所對應的上界值達到越小越好,我們稱這個問題為雙線性矩陣不等式約束條件的多目標問題。藉由使用matlab裡的線性矩陣不等式toolbox和演化運算法,我們可以在一次模擬中獲得許多不同的解,這些解稱作Pareto最佳解來供設計者做選擇。一些數值模擬可以用來闡述設計流程去證明這個設計問題在所提出多目標H2/H-infinity功率控制問題在直序展頻分碼多重存取系統的表現。

    1. Introduction 7 2. Power Control Model 13 A. Model of Channel, Base Station and Mobile Station in the Closed-loop Power Control System 13 B. State-Space Model 15 3. Problem Formulation 18 4. Multiobjective Optimization Problem 28 5. Simulation 32 A. Simulation Settings 32 B: Initial Population And Final Population 32 C. Effect of round-trip delay on multiobjective H2/H-infinity performance 34 6. Conclusion 36 Bibliography 38

    [1] F. Berggren and S. L. Kim, "Energy-efficient control of rate and power in DS-CDMA systems," IEEE Transactions on Wireless Communications, vol. 3, pp. 725-733, May 2004.
    [2] M. A. Aldajani and A. H. Sayed, "Adaptive predictive power control for the uplink channel in DS-CDMA cellular systems," IEEE Transactions on Vehicular Technology, vol. 52, pp. 1447-1462, Nov 2003.
    [3] A. Abrardo, et al., "Optimization of power control parameters for DS-CDMA cellular systems," IEEE Transactions on Communications, vol. 49, pp. 1415-1424, Aug 2001.
    [4] F. C. Lau and W. M. Tam, "Novel SIR-estimation-based power control in a CDMA mobile radio system under multipath environment," Vehicular Technology, IEEE Transactions on, vol. 50, pp. 314-320, 2001.
    [5] A. Yener, et al., "Interference management for CDMA systems through power control, multiuser detection, and beamforming," Communications, IEEE Transactions on, vol. 49, pp. 1227-1239, 2001.
    [6] W. Jyh-Horng, et al., "A feasible method to implement optimum CIR-balanced power control in CDMA cellular mobile systems," Vehicular Technology, IEEE Transactions on, vol. 52, pp. 80-95, 2003.
    [7] M. Chen and D. N. C. Tse, "An upper bound on the convergence rate of uplink power control in DS-CDMA systems," Communications Letters, IEEE, vol. 10, pp. 231-233, 2006.
    [8] C. Fischione, et al., "Power and rate control with outage constraints in CDMA wireless networks," Communications, IEEE Transactions on, vol. 57, pp. 2225-2229, 2009.
    [9] F. Meshkati, et al., "A game-theoretic approach to energy-efficient power control in multicarrier CDMA systems," Selected Areas in Communications, IEEE Journal on, vol. 24, pp. 1115-1129, 2006.
    [10] M. R. Musku, et al., "A game-theoretic approach to joint rate and power control for uplink CDMA communications," Communications, IEEE Transactions on, vol. 58, pp. 923-932, 2010.
    [11] D. Tse and P. Viswanath, Fundamentals of wireless communication: Cambridge Univ Pr, 2005.
    [12] A. Chockalingam and L. B. Milstein, "Capacity of DS-CDMA networks on frequency selective fading channels with open-loop power control," in Communications, 1995. ICC '95 Seattle, 'Gateway to Globalization', 1995 IEEE International Conference, vol. 2, pp. 703-707, 1995.
    [13] A. Chockalingam and L. B. Milstein, "Open loop power control performance in DS CDMA networks with frequency selective fading and non stationary base stations," Wireless Networks, vol. 4, pp. 249-261, 1998.
    [14] G. Zihua and K. B. Letaief, "Adaptive open loop power control and impact on the Erlang capacity of LEO satellite CDMA systems," in Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st, vol.2, pp. 1591-1595, 2000.
    [15] W. Jiangzhou, "Open-loop power control error in cellular CDMA overlay systems," Selected Areas in Communications, IEEE Journal on, vol. 19, pp. 1246-1254, 2001.
    [16] A. Abrardo and D. Sennati, "On the analytical evaluation of closed-loop power-control error statistics in DS-CDMA cellular systems," Vehicular Technology, IEEE Transactions on, vol. 49, pp. 2071-2080, 2000.
    [17] F. C. M. Lau and W. M. Tam, "Achievable-SIR-based predictive closed-loop power control in a CDMA mobile system," Vehicular Technology, IEEE Transactions on, vol. 51, pp. 720-728, 2002.
    [18] M. Rintamaki, et al., "Adaptive closed-loop power control algorithms for CDMA cellular communication systems," Vehicular Technology, IEEE Transactions on, vol. 53, pp. 1756-1768, 2004.
    [19] L. Mendo and J. M. Hernando, "System-level analysis of closed-loop power control in the uplink of DS-CDMA cellular networks," IEEE Transactions on Wireless Communications, vol. 6, pp. 1681-1691, May 2007.
    [20] B. K. Lee, et al., "Robust H-infinity power control for CDMA cellular communication systems," IEEE Transactions on Signal Processing, vol. 54, pp. 3947-3956, Oct 2006.
    [21] B. S. Chen, et al., "Power control for CDMA cellular radio systems via l(1) optimal predictor," IEEE Transactions on Wireless Communications, vol. 5, pp. 2914-2922, Oct 2006.
    [22] L. Chong, et al., "Robust Power Control for CDMA Cellular Communication Systems via H2 Optimal Theory," in Wireless Communications, Networking and Mobile Computing, 2008. WiCOM '08. 4th International Conference, pp. 1-5, 2008.
    [23] K. Deb, Multi-objective optimization using evolutionary algorithms: Wiley, 2001.
    [24] R. T. Marler and J. S. Arora, "Survey of multi-objective optimization methods for engineering," Structural and multidisciplinary optimization, vol. 26, pp. 369-395, 2004.
    [25] R. Jong-hyun, et al., "Pareto front approximation with adaptive weighted sum method in multiobjective simulation optimization," in Winter Simulation Conference (WSC), Proceedings of the 2009, pp. 623-633, 2009.
    [26] M. Ziolkowski and S. Gratkowski, "Weighted Sum Method and Genetic Algorithm Based Multiobjective Optimization of an Exciter for Magnetic Induction Tomography," Theoretical Engineering (ISTET), 2009 XV International Symposium on, pp. 1-5, 2009.
    [27] K. Deb, et al., "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182-197, Apr 2002.
    [28] J. Horn, et al., "A niched Pareto genetic algorithm for multiobjective optimization," in Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on 1994, pp. 82-87 vol. 1.
    [29] T. S. Rappaport, Wireless communications.
    [30] S. Boyd, et al., Linear matrix inequalities in system and control theory. SIAM press, 1994.
    [31] B. S. Chen, et al., "Mixed H2/H-infinity filtering design in multirate transmultiplexer systems: LMI approach," IEEE Transactions on Signal Processing, vol. 49, pp. 2693-2701, 2001.
    [32] K. Deb and R. B. Agrawal, "Simulated binary crossover for continuous search space," Complex Systems, vol. 50, pp. 115-148, 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE