簡易檢索 / 詳目顯示

研究生: 陳怡婷
Chen, Yi-Ting.
論文名稱: 發展PVC填充與三維列印微管柱串聯感應耦合電漿質譜儀分別進行活體動物腦中及環境水樣中鐵物種的分析研究
PVC-Packed Minicolumn and 3D-Printed Minicolumn Coupled with ICP-MS respectively for Speciation of Iron in Living Rat Brain Extracellular Fluid and Natural Water Samples
指導教授: 孫毓璋
Sun, Yuh-Chang
蘇正寬
Su, Cheng-Kuan
口試委員: 楊末雄
謝有容
陳泊余
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 106
中文關鍵詞: 感應耦合電漿質譜儀三維列印鐵物種分析
外文關鍵詞: ICP-MS, 3D printing, Iron speciation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵是維持生命的重要微量元素之一,分析及測定生物體及環境中的鐵物種,對於提升人類健康與生活品質是不可缺乏的重要一環,由於濃度低與易受鹽類基質干擾等因素的限制,發展高效率、低污染風險且操作簡單的樣品前處理系統,對於了解生物醫學與環境科學領域中鐵物種相關研究而言,至今仍是一個十分重要的課題;為解決上述難題,本研究利用PVC粉填充微管柱連結微透析取樣裝置,搭配閥相輔助注入分析系統與感應耦合電漿質譜儀,發展自動化MD-PVC-packed dual minicolumn-ICP-MS連線分析系統,用來監測活體大鼠腦中,因急性去極化效應,所造成腦細胞間液內Fe(II)與Fe(III)的即時動態變化趨勢,根據所獲得之結果說明,當受到急性去極化刺激之後,腦細胞間液內Fe(II)與Fe(III)的濃度確實會發生顯著降低的情形,亦證實此分析系統確實具有監測活體動物腦中鐵物種動態變化趨勢的能力;此外,本研究亦利用三維列印微管柱固相萃取裝置串聯閥相輔助注入分析系統與感應耦合電漿質譜儀,建立自動化3DP-dual minicolumn-ICP-MS連線分析系統,用來分析環境水樣中的鐵物種,根據分析參考樣品(1643e、1640a、SLEW-3與CASS-4)與添加分析試驗之結果,說明本研究所開發之自動化連線分析系統,確實具有準確分析環境水樣中低濃度鐵物種的能力。


    Exploration of brain extracellular non-protein-bound/diffusible iron species remains an important issue in investigations of free radical biology and neurodegenerative diseases. In this study, a sample pretreatment scheme, involving poly(vinyl chloride)–packed minicolumn as a selective extraction device, was optimized in conjunction with microdialysis sampling and inductively coupled plasma mass spectrometry (ICP-MS) in cool-plasma mode for in vivo online monitoring of rat brain extracellular Fe(II) and Fe(III). After system’s optimization, the method’s applicability was verified through (i) spike analyses of offline-collected rat brain microdialysates, (ii) determination of the basal Fe(II) and Fe(III) concentrations of living rat brain extracellular fluids, and (iii) monitoring of the dynamic changes in the Fe(II) and Fe(III) concentrations in response to perfusion of a high-K+ medium.

    Furthermore, to enable speciation of trace iron in environmental samples, a stereolithographic 3D printer and acrylate-based resins were utilized to fabricate a demountable minicolunm to selectively extract Fe(II) and Fe(III) and facilitate their analyses in high-salt-content environmental samples by hyphenating to ICP-MS. After system’s optimization, the analyses of the reference materials 1643e, 1640a, CASS-4, and SLEW-3 as well as the spike analyses of those collected environmental samples were performed to confirm the method’s reliability. These two proposed sample pretreatment schemes, based on respectively using the PVC-packed minicolumn and the non-functionalization 3D-printed minicolumn, appear to have great practicality for the iron speciation in biological and environmental samples.

    摘要I Abstract II 目錄III 圖目錄VIII 表目錄XI 第一章前言1 1.1 腦組織中的鐵離子1 1.1.1 鐵離子在腦組織中扮演的角色1 1.1.2 鐵離子對於腦部慢性疾病的影響3 1.2 環境水體中的鐵離子5 1.2.1 鐵離子在環境中扮演的角色5 1.2.2 鐵離子對於環境生態的影響7 1.3 鐵物種分析方法與限制9 1.3.1 鐵物種分析方法之演進9 1.3.2 鐵離子樣品在偵測時所面臨的困境10 1.4 線上前處理分析系統12 1.4.1 線上前處理分析系統之優點12 1.4.2 三維列印技術之應用14 1.5 研究目的16 第二章 儀器分析及原理17 2.1 微透析取樣法17 2.2 感應耦合電漿質譜法18 2.2.1 樣品導入系統20 2.2.2 游離源23 2.2.3 真空緩衝介面與離子聚焦透鏡25 2.2.4 四極柱質量分析器28 2.2.5 離子偵測器29 2.3 三維列印技術31 第三章 實驗材料與方法36 3.1 儀器裝置與配件36 3.1.1 儀器裝置與配件36 3.1.2 實驗藥品與試劑38 3.1.3 實驗用水與容器清洗38 3.1.4 實驗動物來源39 3.2 分析系統的清洗與保存39 3.2.1 微透析探針於實驗前後的清洗與保存39 3.2.2 實驗前後,固相萃取系統的清洗與保存40 3.3 MD-PVC-packed minicolumn-ICP-MS連線分析系統建立與最佳化條件40 3.3.1 MD-PVC-packed minicolumn-ICP-MS連線分析系統建立 40 3.3.2 PVC微管柱製備45 3.3.3 MD-PVC-packed minicolumn-ICP-MS連線分析系統最佳化之探討 45 3.3.4 MD-PVC-packed minicolumn-ICP-MS連線分析系統效能評估 46 3.3.5 MD-PVC-packed minicolumn-ICP-MS連線分析系統應用於監測活體大鼠腦中細胞間液內鐵離子的動態分析48 3.4 3DP-minicolumn-ICP-MS連線分析系統49 3.4.1 三維列印微管柱的設計與列印49 3.4.2 3DP-minicolumn-ICP-MS連線分析系統建立52 3.4.3 3DP-minicolumn-ICP-MS連線分析系統最佳化探討57 3.4.4 3DP-minicolumn-ICP-MS連線分析系統效能評估58 3.4.5 樣品取得與配置59 第四章 實驗結果與討論61 4.1 MD-PVC-packed minicolumn-ICP-MS連線分析系統之最佳化條件探討61 4.1.1微透析探針取樣的回收率62 4.1.2樣品pH值對於萃取效率的影響63 4.1.3緩衝溶液濃度對於萃取效率的影響64 4.1.4載流溶液體積對於分離效率的影響65 4.1.5載流溶液流速對於萃取效率的影響66 4.2 MD-PVC-packed minicolumn-ICP-MS連線分析系統效能評估67 4.2.1區分曲線的建立69 4.2.2檢量線與系統效能評估69 4.2.3分析系統之長時間穩定度評估70 4.3利用MD-PVC-packed minicolumn-ICP-MS連線系統進行活體大鼠腦中細胞間液內鐵離子的動態分析71 4.4 3DP-minicolumn-ICP-MS連線分析系統之最佳化探討74 4.4.1樣品pH值對於萃取效率的影響74 4.4.2樣品進樣流速對於萃取效率的影響76 4.4.3緩衝溶液濃度對於萃取效率的影響77 4.4.4載流溶液體積對於分離效率的影響78 4.4.5載流溶液流速對於分離效率的影響79 4.4.6三維列印微管柱內部結構之最佳化探討80 4.4.7三維列印微管柱飽和吸附量81 4.5 3DP-minicolumn-ICP-MS連線分析系統效能評估82 4.5.1 線性關係與偵測極限83 4.5.2系統準確度及精密度評估83 4.6 利用3D-printed-minicolumn-ICP-MS連線分析系統進行環境水樣中鐵物種之分析研究86 第五章 結論88 第六章 參考文獻90 附錄99

    1. 謝冕,臧家業,車 宏,孫 濤,馬永星, 微量元素鐵在海洋生態系統中的作用, 海洋開發與管理, 2013, 30, 54-60.
    2. Tucker, D.M.; Sandstead, H.H.; Penland, J.G.; Dawson, S.L.; Milne, D.B., Iron Status and Brain Function: Serum Ferritin Levels Associated with Asymmetries of Cortical Electrophysiology and Cognitive Performance, Am J Clin Nutr. 1984, 39, 105-113.
    3. Gaeta, A.; Hider, R. C., The Crucial Role of Metal Ions in Neurodegeneration: The Basis for a Promising Therapeutic Strategy, Br. J. Pharmacol 2005, 146, 1041–1059.
    4. Manoharan, S.; Guillemin, G.J.; Abiramasundari, R. S.; Essa, M. M., Akbar, M.; Akbar, M. D., Rhe Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Mini Review, Oxid Med Cell Longev. 2016,2016: 8590578.
    5. Hare, D.; Ayton, S.; Bush, A.; Lei, P., A Delicate Balance: Iron Metabolism and Diseases of the Brain, Front. Aging Neurosci. 2013, 5, 1–19.
    6. Gottschall, D. W.; Dietrich, R. F.; Benkovic, S. J.; Shiman, R., Phenylalanine hydroxylase. Correlation of the Iron Content with Activity and the Preparation and Reconstitution of the Apoenzyme, J. Bio. Chem. 1982, 257, 845–849.
    7. Connor, J. R.; Pavlick, G.; Karli, D.; Menzies, S. L.; Palmer, C., A Histochemical Study of Iron-Positive Cells in the Developing Rat Brain, J. Comp. Neurol. 1995, 355, 111–123.
    8. Leitner, D. F.; Connor, J. R., Functional Roles of Transferrin in the Brain, Biochim. Biophys. Acta 2012, 1820, 393–402.
    9. Bradbury, M. W. B., Transport of Iron in the Blood-Brain-Cerebrospinal Fluid System, J. Neurochem. 1997, 69, 443–454.
    10. Patel, M.; Ramavataram, D. V. S. S., Non Transferrin Bound Iron: Nature, Manifestations and Analytical Approaches for Estimation, Ind. J. Clin. Biochem. 2012, 27, 322–332.
    11. Ji, C. Y.; Korsman, D. J., Molecular Mechanisms of Non-Transferrin-Bound and Transferrin-Bound Iron Uptake in Primary Hippocampal Neurons, J. Neurochem. 2015, 133, 668–683.
    12. Halliwell, B.; Gutteridge, J. M. C., Role of Free Radicals and Catalytic Metal Ions in Human Disease: An Overview, Methods Enzymol. 1990, 186, 1–85.
    13. Horwitz, L. D.; Rosenthal, E. A., Iron-mediated Cardiovascular Injury, Vasc. Med. 1999, 4, 93–99.
    14. Voogd, A.; Sluiter, W.; Koster, J. F., The Increased Susceptibility to Hydrogen Peroxide of the (Post-)ischemic Weight Iron Pool, Free Radical Bio. Med. 1994, 16, 453–458.
    15. Nilsson, U. A.; Bassen, M.; Sävman, K.; Kjellmer, I., A Simple and Rapid Method for the Determination of ‘’Free’’ Iron in Biological Fluids, Free Radical Res. 2002, 36, 677–684.
    16. Ayton, S.; Zhang, M.; Roberts, B. R.; Lam, L. Q.; Lind, M.; McLean, C.; Bush, A. I.; Frugier, T.; Crack, P. J.; Duce, J. A., Ceruloplasmin and β-amyloid Precursor Protein Confer Neuroprotection in Traumatic Brain Injury and Lower Neuronal Iron, Free Radical Bio. Med. 2014, 69, 331–337.
    17. Tamano, H.; Takeda, A., Is Interaction of Amyloid β-peptides with Metals Involved in Cognitive Activity, Metallomics 2015, 8, 1205–1212.
    18. Jickells, T. D.; An, Z. S.; Andersen, K. K.; Baker, A. R.; Bergametti, G.; N. Brooks, Cao, J. J.; Boyd, P. W.; Duce, R. A.; Hunter, K. A.; Kawahata, H.; Kubilay, N.; laRoche, J.; Liss, P. S.; Mahowald, N.; Prospero, J. M.; Ridgwell, A. J.; Tegen, I.; Torres, R., Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate, Science 2005, 308, 67–71.
    19. Achterberg, E. P.; Holland, T. W.; Bowie, A. R.; Mantoura, R. F.; Worsfold, P. J., Determination of Iron in Seawater, Anal. Chim. Acta 2001, 442, 1–14.
    20. Worsfold, P. J.; Lohan, M. C.; Ussher, S. J.; Bowie, A. R., Determination of Dissolved Iron in Seawater: A Historical Review, Mar. Chem. 2014, 166, 25–35.
    21. Emerson, D.; Roden, E.; Twining, B. S., The Mocrobial Ferrous Wheel: Cycling in Terrestrial, Freshwater and Marine Environments, Front. Microbiol. 2012, 3, 383–384.
    22. Martin, J. H.; Fitzwater, S. E., Iron Deficiency Limits Phytoplankton Growth in the North-East Pacific Subarctic, Nature 1988, 331, 341–343.
    23. Morel, F. M. M.; Price, N. M., The Biogeochemical Cycles of Trace Metals in the Oceans, Science 2003, 300, 944–947.
    24. Martinez, J. S.; Haygood, M. G.; Butler, A., Identification of a Natural Desferrioxamine Siderophore Produced by a Marine Bacterium, Limnol. Oceanogr. 2001, 246, 420–424.
    25. Tagliabue, A.; Bowie, A. R.; Boyd, P. W.; Buck, K. N.; Johnson, K. S.; Saito, M. A., The Integral Role of Iron in Ocean Biogeochemistry, Nature 2017, 543, 51–59.
    26. Sunda, W. G.; Huntsman, S. A., Iron Uptake and Growth Limitation in Oceanic and Coastal Phytoplankton, Mar. Chem. 1995, 50, 189–206.
    27. Cooper, L. H. N., Iron in the Sea and Marine Plankton, The Royal Society, 1935, 419-438.
    28. Fortune, W. B.; Mellon, M. G., Determination of Iron with o-Phenanthroline: A Spectrophotometric Study, Ind. Eng. Chem. Anal. Ed. 1938, 10, 60–64.
    29. Mehlig, R. P.; Hulett, R. H., Spectrophotometric Determination of Iron with o-Phenanthroline and with Nitro-o-Phenanthroline, Ind. Eng. Chem. Anal. Ed. 1942, 14, 869–871.
    30. Kang, S. W.; Sakai, T,; Ohno, N,; Ida, K., Simultaneous Spectrophotometric Determination of Iron and Copper in Serum with 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulphopropylamino) aniline by Flow-Injection Analysis, Anal. Chim. Acta 1992, 261, 197–203.
    31. Zhuang, G.; Yi, Z.; Duce, R. A.; Brown, P. R., Link between Iron and Sulphur Cycles Suggested by Detection of Fe(n) in Remote Marine Aerosols, Nature 1992, 355, 537–539.
    32. Yi, Z.; Zhuang, G. S.; Brown, P. R.; Duce, R. A., High-Performance Liquid Chromatographic Method for the Determination of Ultratrace Amounts of Iron(II) in Aerosols, Rainwater, and Seawater, Anal. Chem. 1992, 64, 2826–2830.
    33. Krekler, S.; Frenzel, W.; Schulze, G., Simultaneous Determination of Iron(II)/Iron(III) by Sorbent Extraction with Flow-Injection Atomic Absorption Detection, Anal. Chim. Acta 1994, 296, 115–117.
    34. Pehkonen, S., Determination of the Oxidation States of Iron in Natural Waters, Analyst 1995, 120, 2655–2663.
    35. Pu, X. L.; Hu, B.; Jiang, Z. C.; Huang, C. Z., Speciation of Dissolved Iron(II) and Iron(III) in Environmental Water Samples by Gallic Acid-Modified Nanometer-Sized Alumina Micro-Column Speciation and ICP-MS Determination, Analyst 2005, 130, 1175–1181.
    36. Bagheri, H.; Gholami, A.; Najafi, A., Simultaneous Preconcentration and Speciation of Iron(II) and Iron(III) in Water Samples by 2-mercaptobenzimidazole-Silica Gel Sorbent and Flow Injection Analysis System, Anal. Chim. Acta 2000, 424, 233–242.
    37. Xiong, C. M.; Jiang Z. C.; Hu, B., Speciation of dissolved Fe(II) and Fe(III) in environmental water samples by micro-column packed with N-benzoyl-N-phenylhydroxylamine loaded on microcrystalline naphthalene and determination by electrothermal vaporization inductively coupled plasma-optical emission spectrometry, Anal. Chim. Acta. 2006, 559, 113–119.
    38. Procter, A.; Doshi, B.; Bowen, D.; Murphy, E., Rapid Autopsy Brains for Biochemistry Research: Experiences in Establishing a Programme, Int. J. Geriatr. Psychiatry. 1990, 5, 287–294.
    39. Lee, J. M.; Boyle, E. A.; Echegoyen-Sanz, Y.; Fitzsimmons, J. N.; Zhang, R.; Kayser, R. A., Analysis of Trace Metals (Cu, Cd, Pb, and Fe) in Seawater Using Single Batch Nitrilotriacetate Resin Extraction and Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Anal. Chim. Acta. 2011, 686, 93–101.
    40. Wang J.; Hansen, E. H., On-line Sample-Pre-Treatment Schemes for Trace-Level Determinations of Metals by Coupling Flow Injection or Sequential Injection with ICP-MS, TrAC-Trend Anal. Chem. 2003, 22, 836–846.
    41. Wollenweber, D.; Straßburg, S.; Wünsch, G., Determination of Li, Na, Mg, K, Ca and Fe with ICP-MS Using Cold Plasma Conditions, Fresenius J. Anal. Chem. 1999, 364, 433–437.
    42. Minnich, M.G.; Montaser, A., Direct injection high efficiency nebulization in inductively coupled plasma mass spectrometry under cool and normal plasma conditions, Appl. Spectrosc. 2000, 54, 1261–1269.
    43. Bianchi, F.; Careri, M.; Maffini, M.; Mangia, A.; Mucchino, C., se of experimental design for optimisation of the cold plasma ICP-MS determination of lithium, aluminum and iron in soft drinks and alcoholic beverages, Rapid Commun. Mass Spectrom. 2003, 17, 251–256.
    44. Tanner, S.D.; Baranov, V.I.; Bandura, D.R., Reaction cells and collision cells for ICP-MS: a tutorial review, Spectrochim. Acta Part B 2002, 57, 1361–1452.
    45. Hattendorf, B.; Günther, D., Suppression of in-cell generated interferences in a reaction cell ICP-MS by bandpass tuning and kinetic energy discrimination, J. Anal. At. Spectrom. 2004, 19, 600–606.
    46. Pohl, P.; Prusisz, B., Redox Speciation of Iron in Waters by Resin-Based Column Chromatography, Trac—Trends Anal. Chem. 2006, 25, 909–916.
    47. Su, C. K.; Li, T. W.; Sun, Y. C., Online In-Tube Solid-Phase Extraction Using a Nonfunctionalized PVC Tube Coupled with ICPMS for in Vivo Monitoring of Trace Metals in Rat Brain Microdialysates, Anal. Chem. 2008, 80, 6959–6967.
    48. Su, C. K.; Huang, C. W.; Yang, C. S.; Wang, Y. J.; Sun, Y, C., In vivo Monitoring of Quantum Dots in Extracellular Space Using Push-Pull Perfusion Sampling, Online in-Tube Solid Phase Extraction, and Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 2010, 17, 7096–7102.
    49. Su, C. K.; Yang, C. H.; Lin, C. H.; Sun, Y. C., In-vivo Evaluation of the Permeability of the Blood-Brain Barrier to Arsenicals, Molybdate, and Methylmercury by use of Online Microdialysis-packed Minicolumn-Inductively Coupled Plasma Mass Spectrometry, Anal. Bioanal. Chem. 2014, 406, 239–247.
    50. Su, C. K.; Peng, P. J.; Sun, Y. C., Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater, Anal. Chem. 2015, 87, 6945–6950.
    51. Kodama, H., Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer, Rev. Sci. Instrum. 1981, 52, 1770–1773.
    52. SPIE-Professional, Chuck Hull: Pioneer in Stereolithography, 2013, http://spie.org/x91418.xml
    53. Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A., The Upcoming 3D-Printing Revolution in Microfluidics, Lab Chip. 2016, 16, 1720–1742.
    54. Gross, B. C.; Erkal, J. L.; Lockwood, S. Y.; Chen C.; Spence, D. M., Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences, Anal. Chem. 2014, 86, 3240–3253.
    55. Au, A. K.; Lee, W.; Folch, A., Mail-order Microfluidics: Evaluation of Stereolithography for the Production of Microfluidic Devices, Lab. Chip. 2014, 14, 1294–1301.
    56. Shallan, A. I.; Smejkal, P.; Corban, M.; Guijt, R. M.; Breadmore, M. C., Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes, Anal. Chem. 2014, 86, 3124–3130.
    57. Comina, G.; Suska, A.; Filippini, D., PDMS Lab-on-a-Chip Fabrication Using 3D Printed Templates, Lab Chip 2014, 14, 424–430.
    58. Fee, C.; Nawada, S.; Dimartino, S., 3D Printed Porous Media Columns with Fine Control of Column Packing Morphology, J. Chromatogr. A 2014, 1333, 18–24.
    59. Tseng, P.; Murray, C.; Kim, D.; Carlo, D. D., Research Highlights: Printing the Future of Microfabrication, Lab Chip 2014, 14, 1491–1495.
    60. Ungerstedt, U.; Hallstrom, A., In Vivo Microdialysis- a New Approach to the Analysis of Neurotransmitters in the Brain, Life Sci. 1987, 41, 861–864.
    61. Torto, N.; Mwatseteza, J.; Sawula, G., A Study of Microdialysis Sampling of Metal Ions, Anal. Chim. Acta. 2002, 456, 253–261.
    62. Jarvis, K. E.; Gray, A. L.; Houk, R.S., Handbook of Inductively Coupled Plasma Mass Spectrometry, Blackie, Glasgow, 1992.
    63. Taylor, H. E., Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, New-York, 2001.
    64. Todoli, J. L.; Mermet, J. M., Elemental Analysis of Liquid Microsamples through Inductively Coupled Plasma Spectrochemistry, TrAC-Trend Anal. Chem. 2005, 24, 107–116.
    65. Guo, X.; Sturgeon, R. E.; Mester, Z.; Gardner, G. J., Vapor Generation by UV Irradiation for Sample Introduction with Atomic Spectrometry, Anal. Chem. 2004, 76, 2401–2405.
    66. Sharp, B. L., Pneumatic Nebulisers and Spray Chambers for Inductively Coupled Plasma Spectrometry: A Review. Part 1, Nebulisers. J. Anal. Atom. Spectrom. 1988, 3, 613–652.
    67. Douglas, D. J.; Quan, E. S. K.; Smith, R. G., Elemental Analysis with an Atmospheric Pressure Plasma (MIP, ICP)/Quadrupole Mass Spectrometer System, Spectrochimica Acta Part B 1983, 38, 39–48.
    68. Hull, C. W., Apparatus for Production of Three-Dimensional Objects by Stereolithography. U.S. Patent 4,575,330, March 11, 1986.
    69. Sachs, E. M.; Haggerty, J. S.; Cima, M. J. Williams, P. A., Three-dimensional Printing Techniques, U.S. Patent 5,204,055, April 20, 1993.
    70. Mannoor, M. S.; Jiang, Z.; James, T.; Kong, Y. L.; Malatesta, K. A.; Soboyejo, W. O.; Verma, N.; Gracias, D. H.; McAlpine, M. C., 3D Printed Bionic Ears, Nano Lett. 2013, 13, 2634–2639.
    71. Zein, N. N.; Hanouneh, I. A.; Bishop, P. D.; Samaan, M.; Eghtesad, B.; Quintini, C.; Miller, C.; Yerian, L.; Klatte, R., Three-Dimensional Print of a Liver for Preoperative Planning in Living Donor Liver Transplantation, Liver Transplant 2013, 19, 1304–1310.
    72. Gustafsson, J.P.; Visual MINTEQ, Version 3.1; Department of Land and Water Resources Engineering, KTH (Royal Institute of Technology): Stockholm (http://vminteq.lwr.kth.se/download/)
    73. Bokare, A.D.; Choi, W., Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater. 2014, 275, 121–135.
    74. Chung, Y. T.; Ling, Y. C.; Yang, C. S.; Sun, Y. C.; Lee, P. L.; Hong, C. C.; Yang, M. H., In Vivo Monitoring of Multiple Trace Metals in the Brain Extracellular Fluid of Anestheized Rats by Microdialysis-Membrane Desalter-ICPMS, Anal. Chem. 2007, 79, 8900–8910.
    75. Benveniste, H.; Huttemeier, P. C., Microdialysis—Theory and Application, Prog. Neurobiol. 1990, 35, 195–215.
    76. Pelizzoni, I.; Macco, R.; Morini, M.F.; Zacchetti, D.; Grohovaz, F.; Codazzi, F., Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity, Aging Cell 2011, 10, 172–183.
    77. Gaasch, J.A.; Geldenhuys, W.J.; Lockman, P.R.; Allen, D.D.; Van der Schyf, C.J., Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures, Neurochem. Res. 2007, 32, 1686–1693.
    78. Shih, T.; Chen, W.; Sun, Y. C., Open-Channel Chip-based Solid-Phase Extraction Combined with Inductively Coupled Plasma Mass Spectrometry for Online Determination of Trace Elements in Volume-Limited Saline Samples, J. Chromatogr A 2011, 1218, 2342–2348.
    79. Giokas, D. L.; Paleologos, E. K.; Karayannis, M. I., Speciation of Fe(II) and Fe(III) by the Modified Ferrozine Method, FIA-Spectrophotometry, and Flame AAS after Cloud-Point Extraction, Anal. Bioanal. Chem., 2002, 373, 237-243.

    QR CODE