簡易檢索 / 詳目顯示

研究生: 彭翠儀
Peng,Tsui-Yi
論文名稱: Characterization of the severe acute respiratory syndrome coronavirus nucleocapsid (SARS-CoV N) protein
劇烈上呼吸道感染冠狀病毒鞘蛋白特性之探討
指導教授: 李寬容
Lee,Kuan-Rong
譚婉玉
Tarn,Woan-Yuh
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 134
中文關鍵詞: SARScoronavirusnucleocapsidRS-motifphosphorylationtranslation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    In early 2003, a novel coronavirus named severe acute respiratory syndrome coronavirus (SARS-CoV) caused a worldwide outbreak disease, SARS, displayed a high infectious ability. SARS Coronavirus nucleocapsid (N) protein is one of most abundant viral protein in infected cells, it is a phosphoproteins and plays multiple functions in viral synthesis and regulates host cells signal transduction. The N protein contains an arginine/serine (RS)-rich motif in its middle region, the role of this motif still need to be identified. In this study, we demonstrate that the SARS-CoV N protein is phosphorylated through RS-rich motif in vitro and in vivo. N protein could bind specific (viral) and non-specific (random) RNA, our results indicated that SRPK1 phosphorylation of the SR motif can reduces the multimerization ability of N protein. Moreover, SARS-CoV N protein impaires the translation via the RS motif, nevertheless, phosphorylation of the N protein can partly rescue the translation. Additionally, SARS-CoV N proteins localize to both the cytoplasm and the nucleolus, we observed that N protein translocates to cytoplasmic stress granules (SGs) when cells under stress, however, SRPK1 overexpression can inhibit N protein translocate to SGs. Taken together, SR motif regulates multiple functions of SARS-CoV N protein. Further, hypo- or hyper- phosphorlation of the N protein impaired its activity of these regulations, including multimerization and translation control.
    Another RNA-binding protein, hnRNP Q, is one of the SMN RNA-associating proteins. We observed that the RGG box of hnRNP Q interacts with SMN RNA, and C-terminal domain of hnRNP Q1 mediates RNA binding and self association.


    Contents 國立清華大學博碩士論文著作權授權書••••••••••••••••••I 國家圖書館博碩士論文電子檔案上網授權書••••••••••••••••II 指導教授推薦書•••••••••••••••••••••••••••III 考試委員審定書•••••••••••••••••••••••••••IV 中文摘要••••••••••••••••••••••••••••••V Abstract ••••••••••••••••••••••••••••••VI 致謝•••••••••••••••••••••••••••••••••VII Contents ••••••••••••••••••••••••••••••VIII Chapter I •••••••••••••••••••••••••••••••1 Introduction•••••••••••••••••••••••••••2 Meterials and methods ••••••••••••••••••••••••10 Results ••••••••••••••••••••••••••••••18 Discussion•••••••••••••••••••••••••••••27 Figure ••••••••••••••••••••••••••••••36 Chapter II •••••••••••••••••••••••••••••60 Introduction•••••••••••••••••••••••••••61 Meterials and methods ••••••••••••••••••••••••64 Results ••••••••••••••••••••••••••••••68 Discussion •••••••••••••••••••••••••••73 Figure ••••••••••••••••••••••••••••76 References ••••••••••••••••••••••••••••90 Appendix I ••••••••••••••••••••••••••••••113 Appendix II ••••••••••••••••••••••••••••••125

    References
    Abdul-Manan, N., O’Malley, S. M., Williams, K. R. (1996) Origins of binding specificity of the A1 heterogeneous nuclear ribonucleoprotein. Biochemistry 35: 3545-3554
    Almazan, F., Galan, C., Enjuanes, L. (2004) The nucleoprotein is required for efficient coronavirus genome replication. J. Virol. 78: 12683-12688
    Antson, A. A., Burns, J. E., Moroz, O. V., Scott, D. J., Sanders, C. M., Bronstein, I. B., Dodson, G. G., Wilson, K. S., and Maitland, N. J. (2000) Structure of the intact transactivation domain of the human papillomavirus E2 protein. Nature 403: 805-809
    Antson, A. A. (2000) Single stranded RNA binding proteins. Curr. Opin. Struct. Biol. 10: 87-94
    Baric, R. S., Nelson, G. W., Fleming, J. O., Deans, R. J., Keck, J. G., Casteel, N., Stohlman, S. A. (1988) Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J. Virol. 62: 4280-4287
    Black, D. L. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 72: 291-336
    Bost, A. G., Prentice, E., Denison, M. R. (2001) Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection. Virology 285: 21-29
    Buhler, D., Raker, V., Luhrmann, R., Fischer, U. (1999) Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum. Mol. Genet. 8: 2351-2357
    Campbell, L., Hunter, K. M., Mohaghegh, P., Tinsley, J. M., Brasch, M. A., Davies, K. E. (2000) Direct interaction of Smn with dp103, a putative RNA helicase: a role for Smn in transcription regulation? Hum. Mol. Genet. 9: 1093-1100
    Cao, W., Jamison, S. F., Garcia-Blanco, M. A. (1997) Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro. RNA 3:1456-1467
    Cartegni, L. and Krainer, A. R. (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30: 377-384
    Cartegni, L. and Krainer, A. R. (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat. Struct. Biol. 10: 120-125
    Cartegni, L., Chew, S. L., Krainer, A. R. (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3: 285-298
    Cartegni, L., Hastings, M. L., Calarco, J. A., de Stanchina, E., Krainer, A. R. (2006) Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am. J. Hum. Genet. 78: 63-77
    Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., Krainer, A. R. (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31: 3568-3571
    Calvo, E., Escors, D., Lopez, J. A., Gonzalez, J. M., Alvarez, A., Arza, E., Enjuanes, L. (2005) Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells. J. Gene. Virol. 86: 2255-2267
    Chang, C., Sue, S., Yu, T., Hsieh, C., Tsai, C., Chiang, Y., Lee, S., Hsiao, H., Wu, W., Chang, W., Lin, C., Huang, T. (2006) Modular organization of SARS coronavirus nucleocapsid protein. J. Biomed. Sci. 13: 59-72
    Chang, R. Y. and Brian, D. A. (1996) cis requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication. J. Virol. 70: 2201-2207
    Chang, R. Y., Hofmann, M. A., Sethna, P. B., Brian, D. A. (1994) A cis-acting function for the coronavirus leader in defective interfering RNA replication. J. Virol. 68: 8223-8231
    Chang, C. K., Sue, S. C., Yu, T. H., Hsieh, C. M., Tsai, C. K., Chiang, Y. C., Lee, S. J., Hsiao, H. H., Wu. W. J., Chang, C. F., Huang, T. H. (2005) The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus-like structure. FEBS Lett. 579: 5663-5668
    Charroux, B., Pellizzoni, L., Perkinson, R. A., Shevchenko, A., Mann, M., Dreyfuss, G. (1999) Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J. Cell Biol. 147: 1181-1194
    Charroux, B., Pellizzoni, L., Perkinson, R. A., Yong, J., Shevchenko, A., Mann, M., Dreyfuss, G. (2000) Gemin4: A novel component of the SMN complex that is found is both gems and nucleoli. J. Cell Biol. 148: 1177-1186
    Chen, C. Y., Chang, C. K., Chang, Y. W., Sue, S. C., Bai, H. I., Riang, L., Hsiao, C. D., Huang, T. H. (2007) Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. J. Mol. Biol. 368: 1075-1086
    Chen, H., Gill, A., Dove, B. K.,, Emmett, S. R., Kemp, F. C., Ritchie, M. A., Dee, M., Hiscox, J. A. (2005) Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding using surface plasmin resonance. J. Virol. 79: 3097-3106
    Chen, H., Wurm, T., Britton, P., Brooks, G., Hiscox, J. A. (2002) Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. J. Virol. 76: 5233-5250
    Colwill, K., Feng, L. L., Yeakley, J. M., Gish, G. D., Caceres, J. F., Pawson, T., Fu, X. D. (1996) SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors. J. Biol. Chem. 271: 24569-24575
    Compton, S. R., Barthold, S. W., Smith, A. L. (1993) The cellular and molecular pathogenesis of coronaviruses. Lab. Anim. Sci. 43: 15-28
    Compton, J. R., Rogers, D. B., Holmes, K. V., Fertsch, D., Remenick, J., McGowan, J. J. (1987) In vitro replication of mouse hepatitis virus strain A59. J. Virol. 61: 1814-1820
    Daub, H., Blencke, S., Habenberger, P., Kurtenbach, A., Dennenmoser, J., Wissing, J., Ullrich, A., Cotton, M. (2002) Identification of SRPK1 and SRPK2 as the major cellular protein kinase phosphorylating hepatitis B virus core protein. J. Virol. 76: 8124-8137.
    Davies, H. A., Dourmashkin,R. R., and MacNaughton, R. (1981) Ribonucleoprotein of avian infectious bronchitis virus. J. Gen. Virol. 53:67-74
    DeMaria, C. T. and Brewer, G. (1996) AUF1 binding affinity to AU-rich elements correlates with rapid mRNA degradation. J. Biol. Chem. 271: 12179-12184
    Denison, M. R., Spaan, W. J. M., van der Meer, Y., Gibson, C. A., Sims, A. C., Prentice, E., Lu, S. T. (1999) The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis. J. Virol. 73: 6862-6871
    Dove, B. K., You, J.-H., Reed, M. L., Emmett, S. R., Brooks, G., Hiscox, J. A. (2006) Changes in nucleolar architecture and protein profile during coronavirus infection. Cell. Microbiol. 8: 1147-1157
    Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A.,Berger, A., Burguiere, A. M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J. C., Muller, S., Rickerts, V., Sturmer, M., Vieth, S., Klenk, H. D., Osterhaus, A. D., Schmitz, H., Doerr, H. W. (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348: 1967–1976
    Duan, S. M., Zhao, X. S., Wen, R. F., Huang, J. J., Pi, G. H., Zhang, S. X., Han, J., Bi, S. L., Ruan, L., Dong, X. P; SARS Research Team (2003) Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci. 16: 246-255
    Eickmann M, Becker S, Klenk HD, Doerr HW, Stadler K, Cendini S, Guidotti S, Masignani V, Scarselli M, Mora M, Donati C, Han JH, Song HC, Abrignani S, Covacci A, Rappuoli R (2003) Phylogeny of the SARS coronavirus. Science 302: 1504-1505
    Elvira, G., Wasiak, S., Blandford, V., Tong, K. X., Serrano, A., Fan, X., del Rayo Sanchez-Carbente, M., Servant, F., Bell, A. W., Biosmenu, D., Lacaille, J. C., McPherson, P. S., DesGroseillers, L., Sossin, W. S. (2006) Characterization of an RNA granule from developing brain. Mol. Cell. Proteomics 5: 635-651
    Escors, D., Ortego, J., Laude, H., and Enjuanes, L. (2001) The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J. Virol. 75: 1312-1324
    Fan, C. K., Yieh, K. M., Peng, M. Y., Lin, J. C., Wang, N. C., Chang, F. Y. (2006) Clinical and laboratory features in the early stage of severe acute respiratory syndrome. J. Microbiol. Immunol. Infect. 39: 45-53
    Fan, H., Ooi, A., Tan. Y. W., Wang, S., Fang, S., Liu, D. X., and Lescar, J. (2005) The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properities. Structure 13: 1859-1868
    Fischer, U., Liu, Q., Dreyfuss, G. (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90: 1023-1029
    Fouchier, R. A., Kuiken, T., Schutten, M., van Amerongen, G.,van Doornum, G. J., van den Hoogen, B. G., Peiris, M., Lim, W., Stohr, K., Osterhaus, A. D. (2003) Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423: 240
    Friesen, W. J. and Freyfuss, G. (2000) Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J. Biol. Chem. 275: 26370-26375
    Frugier, T., Nicole, S., Cifuentes-Diaz, C., Melki, J. (2002) The molecular bases of spinal muscular atrophy. Curr. Opin. Genet. Dev. 12: 294-298
    Fu, X. D. (1993) Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365: 82-85
    Fu, X. D. (1995) The superfamily of arginine/serine-rich splicing factors. RNA 1: 663-680
    Gabanella, F., Carissimi, C., Usiello, A., Pellizzoni, L. (2005) The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum. Mol. Genet. 14: 3629-3642
    Giesemann, T., Rathke-Hartlieb, S., Rothkegek, M., Bartsch, J. W., Buchmeier, S., Jjockusch, B. M., Jockusch, H. (1999) A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with smn in nuclear gems. J. Biol. Chem. 274: 37908-37914
    Graveley, B. R. (2000) Sorting out the complexity of SR protein functions. RNA 6: 1197-1211
    Gonzalez, J. M., Gomez-Puertas, P., Cavanagh, D., Grobalenya, A. E., Enjuanes, L. (2003) A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch. Virol. 148: 2207-2235
    Gubitz, A. K., Feng, W., Dreyfuss, G. (2004) The SMN complex. Exp. Cell Res. 296: 51-56
    Gui, J. F., Lane, W. S., Fu, X. D. (1994) A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369: 678-682
    Harris, C. E., Boden, R. A., Astell, C. R. (1999) A novel heterogeneous nuclear ribonucleoprotein-like protein interacts with NS1 of the minute virus of mice. J. Virol. 73: 72-80
    He, R., Dobie, F., Ballantine, M., Leeson, A., Li, Y., Bastien, N., Cutts, T., Andonov, A., Cao, J., Booth, T. F., Plummer, F. A., Tyler, S., Baker, L., Li, X. (2004) Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 316: 476-483
    He, R., Leeson, A., Andonov, A., Li, Y., Bastien, N., Cao, J., Osiowy, C., Dobie, F., Cutts, T., Ballantine, M., Li, X. (2003) Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 311: 870-876
    He, R., Leeson, A., Ballantine, M., Andonov, A., Baker, L., Dobie, F., Li, Y., Bastien, N., Feldmann, H., Strocher, U., Theriault, S., Cutts, T., Cao, J., Booth, T. F., Plummer, F. A., Tyler, S., and Li, X. (2004) Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res. 105: 121-125
    Hiscox, J. A., Wurm, T. Wilson, L., Cavanagh, D. Britton, P., Brooks, G. (2001) The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J. Virol. 75: 506-512
    Hiscox, J. A. (2002) Brief review: the nucleolus--a gatway to viral infection? Arch. Virol. 147: 1077-1089
    Hiscox, J. A. (2003) The interaction of animal cytoplasmic RNA viruses with the nucleus to facilitate replication. Virus Res. 95: 13-22
    Hresko, R. C. and Mueckler, M. (2000) A novel 68-kDa adipocyte protein phosphorylated on tyrosine in response t insulin and osmotic shock. J. Biol. Chem. 275: 18114-18120
    Hresko, R. C. and Mueckler, M. (2002) Identification of pp68 as the tyrosine-phosphorylated form of SYNCRIP/NSAP1. A cytoplasmic RNA-binding protein. J. Biol. Chem. 277: 25233-25238
    Huang, Q., Yu, L., Petros, A. M., Gunasekera, A., Liu, Z., Xu, N., Hajduk, P., Mack, J., Fesik, S. W., and Olejniczak, E. T. (2004a) Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry 43: 6059-6063.
    Huang, Y., Yario, T. A, Steitz, J. A. (2004b) A molecular link between SR protein dephosphorylation and mRNA export. Proc. Natl. Acad. Sci. U. S. A. 101: 9666-9670
    Hurst, K. R., Kuo, L., Koetzner, C. A., Ye, R., Hsue, B., Masters, P. S. (2005) A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J. Virol. 79: 13285-13297
    Ivanov, K. I., Puustinen, P., Mertis, A., Saarma, M., Makinen, K. (2001) Phosphorylation down-regulates the RNA binding function of the coat protein of potato virus A. J. Biol. Chem. 276: 13530-13540
    Ilkow, C. S., Mancinelli, V., Beatch, M. D., Hobman, T. C. (2008) The Rubella virus capsids protein interacts with Poly(A) binding protein and inhibits translation. J. Vriol. 82: 4284-4294
    Jayaram, J., Youn, S., Collisson, E. W. (2005) The virion N protein of infectious bronchitis virus is more phosphorylated than the N protein from infected cell lysates. Virology 339: 127-135
    Kanopka, A., Muhlemann, O., Petersen-Mahrt, S., Estmer, C., Ohrmalm, C., Akusjarvi, G. (1998) Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 393:185-187
    Kashima, T., Rao, N., David, C. J., Manley, J. L. (2007) hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum. Mol. Genet. 16: 3149-3159
    Kedersha, N. and Anderson, P. (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 30: 963-969
    Kiledjian, M. and Dreyfuss, G. (1992) Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J. 11: 2655-2664
    Kim, J. H., Hahm, B., Kim, Y. K., Choi, M., Jang, S. K. (2000) Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J. Mol. Biol. 298: 395-405
    Kinnaird, J. H., Maitland, K., Walker, G. A., Wheatley, I., Thompson, F. J., Devaney, E. (2004) HRP-2, a heterogeneous nuclear ribonucleoprotein, is essential for embryogenesis and oogenesis in Caenorhabditis elegans. Exp. Cell Res. 298: 418-430.
    Kohtz, J., Jamison, S. F., Will, C. L., Zuo, P., Luhrmann, R., Carcia-Blanco, M. A., and Manley, J. L. (1994) Protein-protein interactions and 5’-splice-site recognition in mammalian mRNA precursors. Nature 368: 119-124
    Koizumi, J., Okamoto, Y., Onogi, H., Mayeda, A., Krainer, A. R., Hagiwara, M. (1999) The subcellular localization of SF2/ASF is regulated by direct interaction with SR protein kinases (SRPKs). J Biol Chem 274, 11125-11131
    Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A. E., Humphrey, C. D., Shieh, W. J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., DeRisi, J., Yang, J. Y., Cox, N., Hughes, J. M., LeDuc, J. W., Bellini, W. J., Anderson, L. J. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348: 1953-1966
    Lai, M. M. and Cavanagh, D. (1997) The molecular biology of coronaviruses. Adv. Virus Res. 48: 1-100
    Lai, M. C., Teh, B. H., Tarn, W. Y. (1999) A human papillomavirus E2 transcriptional activator: the interactions with cellular splicing factors and potential function in pre-mRNA processing. J. Biol. Chem. 274: 11832-11841
    Lai, M. C., Kuo, H. W., Chang, W. C., Tarn, W. Y. (2003) A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J. 22: 1359-1369
    Landsman, D. (1992) RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Res. 20: 2861-2864
    Laude, H. and Masters, P. S. (1995) The coronavirus nucleocapsid protein, In S. G. Siddell (ed.), The Coronaviridae. Plenum Press, New York, N.Y. p. 141-163.
    Lau, Y. L. and Peiris, J. S. (2005) Pathogenesis of severe acute respiratory syndrome. Curr. Opin. Immunol. 17: 404-410
    Law, L. M., Everitt, J. C., Beatch, M. D., Holmes, C. F., Hobman, T. C. (2003) Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J. Virol. 77: 1764-1771
    Lee, C., Hodgins, D., Calvert, J. G., Welch, S. K., Jolie, R., Yoo, D. (2006) Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome viris nucleocapsid protein attenuate virus replication. Virology 346: 238-250
    Lefebvre, S., Burglen, L., Reboullet, S., Clermont, O., Burlet, P., Viollet, L., Benichou, B., Cruaud, C., Millasseau, P., Zeviani, M., Le Paslier, D., Frezal, J., Cohen, D., Weissenbach, J., Munnich, A., Melki, J. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155-165
    Leong, H. N., Earnest, A., Lim, H. H., Chin, C. F., Tan, C. S., Puhaindran, M. E., Tan, A. C., Chen, M. I., Leo, Y. S. (2006) SARS in Singapore--predictors of disease severity. Ann. Acad. Med. Singapore. 35: 326-331
    Leung, P. C. and Ooi, E. E. (2003) SARS War: Combating the Disease.
    Li, F. Q., Xiao, H., Tam, J. P., Liu, D. X. (2005) Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus. FEBS Lett. 579: 2387-2396
    Li, T., Zhang, Y., Fu, L., Yu, C., Li, X., Li, Y., Zhang, X., Rong, Z., Wang, Y., Ning, H., Liang, R., Chen, W., Babiuk, L. A., Chang, Z. (2005) siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther. 12: 751-761
    Liu, Q. and Dreyfuss, G. (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 15: 3555-3565
    Liao, W. and Ou, J. H. (1995) Phosphorylation and nuclear localization of the hepatitis B virus core protein: significance of serine in the three repeated SPRRR motifs. J. Virol. 69: 1025-1029
    Lorson, C. L., Androphy, E. J. (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum. Mol. Genet. 9: 259-265
    Lorson, C. L., Hahnen, E., Androphy, E. J., Wirth, B. (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 96: 6307-6311
    Luo, H., Chen, Q., Chen, J., Chen, K., Shen, X., and Jiang, H. (2005) The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett. 579: 2623-2628
    Luo, H., Ye, F., Chen, K., Shen, X., and Jiang, H. (2005) SR-rich motif plays a pivotal role in recombinant SARS coronavirus nucleocapsid protein multimerization. Biochemistry 44: 15351-15358
    Luo, H., Ye, F., Sun, T., Yue, L., Peng, S., Chen, J., Li, G., Du, Y., Xie, Y., Yang, Y., Shen, J., Wang, Y., Shen, X., Jiang, H. (2004) In vitro biochemical and thermodynamic characterization of nuclecapsid protein of SARS. Biophy. Chem. 112: 15-25
    Marra, M. A., Jones, S. J. M., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S. N., Kattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M. McDonald, H., Montgomery, S. B., Pandoh, P. K., Petrescu, A. S., Robertson, A. G., Schein, J. E., Siddiqui, A., Smailus, D. E., Stott, J. M., Yang, G. S., Plummer, F., Ansonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T. F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G. A., Tyler, S., Vogrig, R., Ward. D., Watson, B., Brunham, R. C., Krajden, M., Petric, M., Skowronski, D. M., Upton, C., Roper, R. L. (2003) The genome sequence of the SARS-associated coronavirus. Science 300: 1399-1404
    Mears, W. E. and Rice, S. A. (1996) The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation. J. Virol. 70: 7445-7453
    Meister, G., Buhler, D., Laggerbauer, B., Zobawa, M., Lottspeich, F., Fischer, U. (2000) Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. Hum. Mol. Genet. 9: 1977-1986
    Meister, G., Eggert, C., Fischer, U. (2002) SMN-mediated assembly of RNPs: a complex story. Trends. Cell Biol. 12: 472-478
    Misteli, T., Caceres, J. F., Clement, J. Q., Krainer, A. R., Wilkinson, M. F., Spector, D. L. (1998) Serine phosphorylation of SR proteins is required for their recruitment to sites of translation in vivo. J. Cell Biol. 143: 297-307
    Misteli, T. and Spector, D. L. (1998) The cellular organization of gene expression. Curr. Opin. Cell Biol. 10: 323-331
    Mizutani, A., Fukuda, M., Ibata, K., Shiraishi, Y., Mikoshiba, K. (2000) SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms. J. Biol. Chem. 275: 9823-9831.
    Monani, U. R., Coovert, D. D., Burghes, A. H. (2000) Animal models of spinal muscular atrophy. Hum. Mol. Genet. 9: 2451-2457.
    Monani, U. R., Lorson, C. L., Parsons, D. W., Prior, T. W., Androphy, E. J., Burghes, A. H., McPherson, J. D. (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8: 1177-1183
    Moraes, K. C. M., Quaresma, A. J. C., Maehnss, K., Kobarg, J. (2002) Identification and characterization of proteins that selectively interact with isoforms of the mRNA binding protein AUF1 (hnRNP D). J. Biol. Chem. 384: 25-37.
    Mourelatos, Z., Abel, L., Yong, J., Kataoka, N., Dreyfuss, G. (2001) SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J. 20: 5443-5452
    Nagai, K. (1996) RNA-protein complexes. Curr. Opin. Struct. Biol. 6: 53-61
    Narayana, K., Maeda, A., Maeda, J., and Makina, S. (2001) Characterization of the coronavirus M protein and nuclocapsid interaction in infected cells. J. Virol. 74: 8127-8134
    Nelson, G. W., Stohlman, S. A., and Tahara, S. M. (2000) High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. J. Gen. Virol. 81: 181-188
    Neubauer, G., King, A., Rappsilber, J., Calvio, C., Watson, M., Ajuh, P., Sleeman, J., Lamond, A., Mann, M. (1998) Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat. Genet. 20: 46-50
    Ning, Q., Lakatoo, S., Liu, M. F., Yang, W. M., Wang, Z. M., Phillips, M. J., Levy, G. A. (2003) Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4 alpha. J. Biol. Chem. 278: 15541-15549
    Ning, Q., Liu, M. F., Kongkham, P. Lai, M. M. C., Marsden, P. A., Tseng, J., Pereira, B., Belyavskyi, M., Leibowitz, J., Phillips, M. J., Levy, G. (1999) The nucleocapsid protein of nurine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. J. Biol. Chem. 274: 9930-9936
    Parker, M. M. and Masters, P. S. (1990) Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology 179: 463-468
    Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng T. K., Yuen K. Y. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 1319–1325
    Pellizzoni, L., Charroux, B., Dreyfuss, G. (1999) SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc. Natl Acad. Sci. USA 96: 11167-11172
    Pellizzoni, L., Charroux, B., Rappsilber, J., Mann, M. Dreyfuss, G. (2001) A functional interaction between the survival motor neuron complex and RNA polymerase II. J. Cell Biol. 152: 75-85
    Pellizzoni, L., Kataoka, N., Charroux, B., Dreyfuss, G. (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95: 615-624
    Pinol-Roma, S. and Dreyfuss, G. (1992) Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355: 891-893
    Tan, Y. J., Lim S. G., Hong W. (2006) Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Research 72: 78-88
    Osborne, J. C. and Elliott, R. M. (2000) RNA binding properties of bunyamwera virus nucleocapsid protein and selective binding to an element in the 5’ terminus of the negative-sense S segment. J. Virol. 74: 9946-9952
    Oubridge, C., Ito, N., Evans, P. R., Teo, C. H., and Nagai, K. (1994) Crystal structure at 1.92 A resolution of the RNA binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372: 432-438
    Parker, M. M. and Masters, P. S. (1990) Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Viology 179: 463-468
    Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng, T. K., Yuen, K. Y.; SARS study group. (2003a) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 1319-1325
    Peiris, J. S., Yuen, K. Y., Osterhaus, A. D., Stohr, K. (2003b) The severe acute respiratory syndrome. N. Engl. J. Med. 349: 2431-2441
    Perlman, S. and Dandekar, A. A. (2005) Immunopathogenesis of coronavirus infections: implications for SARS. Nature reviews immunology 5: 917
    Prasad, J., Colwill, K., Pawson, T., Manley, J. L. (1999) The protein kinase Clk/Sty directly modulates SR protein activity: Both hyper- and hypophosphorylation inhibit splicing. Mol. Cell Biol. 19:6991-7000
    Raaben, M., Groot Koerkamp, M. J., Rottier, P. J., Haan, C. A. (2007) Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cell Microbiol. 9: 2218-2229
    Rabenau, H. F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W., Doerr, H. W. (2005) Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol. 194: 1-6
    Reed, M. L., Dove, B. K., Jackson, R. M., Collins, R., Brooks, G., Hiscox, J. A. (2006) Delineation and modeling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic. 7: 833-848
    Risco, C., Anton, M. I., Enjuanes, L., Carrascosa, J. L. (1996) The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J. Virol. 70: 4773-4777
    Roscigno, R. F. and Garcia-Blanco, M. A. (1995) SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA 1:692-706
    Rossoll, W., Jablonka, S., Andreassi, C., Kroning, A. K., Karle, K., Monani, U. R., Sendtner, M. (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. J. Cell Biol. 163: 801-812
    Rossoll, W., Kroning, A. K., Ohndorf, U. M., Steegborn, C., Jablonka, S., Sendtner, M. (2002) Specific interaction of SMN, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for SMN in RNA processing in motor axons? Hum. Mol. Genet. 11: 93-105
    Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Peñaranda, S., Bankamp, B., Maher, K., Chen, M. H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J. L., Chen, Q., Wang, D., Erdman, D. D., Peret, T. C., Burns, C., Ksiazek, T. G., Rollin, P. E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Günther, S., Osterhaus, A. D., Drosten, C., Pallansch, M. A., Anderson, L. J., Bellini, W. J. (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 1394-1399
    Rowland, R. R. R., Chauhan, V., Fang, Y., Pekosz, A., Kerrigan, M., Burton, M. D. (2005) Interacellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in Vero cells. J. Virol. 79: 11507-11512
    Rowland, R. R. R., Kerwin, R., Kuckleburg, C., Sperlich, A., Benfield, D. A. (1999) The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Res. 64: 1-12
    Rowland, R. R. R., and Yoo, D. (2003) Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein: a simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Res. 95: 23-33
    Saikatendu, K. S., Joseph, J. S., Subramanian, V., Neuman, B. W., Buchmeier, M. J., Stevens, R. C., Kuhn, P. (2007) Ribonucleocapsid formation of SARS-CoV through molecular action of the N-terminal domain of N protein. J. Virol. 81: 3913-3921
    Sanford, J. R. and Bruzik, J. P. (1999) Developmental regulation of SR protein hosphorylation and activity. Genes Dev. 13:1513-1518
    Saif, L. J. (1996) Mucosal immunity: an overview and studies of enteric and respiratory coronavirus infections in a swine model of enteric disease. Vet. Immunol. Immunopathol. 54: 163-169
    Singh, N. N., Androphy, E. J., Singh, R. N. (2004) The regulation and regulatory activities of alternative splicing of the SMN gene. Crit. Rev. Eukaryot. Gene Expr. 14: 271-285
    Schelle, B., Karl, N., Ludewig, B., Siddell, S. G., Thiel, V. (2005) Selective replication of coronavirus genomes that express nucleocapsid protein. J. Virol. 79: 6620-6630
    Scott, A. T. and Juliio, A. A. (2005) Dephosphorylation shows SR protein the way out. Molecular cell 20: 499-501
    Spencer, K. A., Dee, M., Britton, P., and Hiscox, J. A. (2007) Role of phosphorylation clusters in the biology of the coronavirus infectious bronchitis virus nucleocapsid protein. Viology 370: 373-381
    Stohlman, S. A., Baric, R. S., Nelson, G. N., Soe, L. H., Welter, L. M., Deans, R. J. (1988) Specific interaction between coronavirus leader RNA and nucleocapsid protein. J. Virol. 62: 4288-4295
    Stohlman, S. A., Fleming, J. O., Patton, C. D., Lai, M. M. C. (1983) Synthesis and subcellular localization of the murine coronavirus nucleocapsid protein. Viology 130: 527-532
    Stojdl, D. F. and Bell, J. C. (1999) SR protein kinases: the splice of life. Biochem. Cell Biol. 77: 293-298
    Sturman, L. S., Holmes, K. V., and Behnke, J. (1980) Isolation of coronavirus envelope glycoproteins and interaction with the nucleocapsid. J. Virol. 33: 449-462
    Surjit, M., Kumar, R., Mishra, R. N., Reddy, M. K., Chow, V. T., Lal, S. K. (2005) The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylate and localizes in the cytoplasm by 14-3-3-meciated translocation. J. Virol. 79: 11476-11486
    Surjit, M., Liu, B., Kumar, P., Chow, V. T., Lal, S. K. (2004) The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochem. Biophys. Res. Commun. 317: 1030-1036
    Surjit, M., Liu, B., Jameel, S., Chow, V. T., Lal, S. K. (2004b) The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochem J. 383: 13-18
    Tacke, R., Chen, Y., Manley, J. L. (1997) Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA 94:1148-1153
    Tahara, S. M., Dietlin, T. A., Bergmann, C. C., Nelson, G. W., Kyuwa, S., Anthony, R. P., Stohlman, S. A. (1994) Coronavirus translation regulation: leader affects mRNA efficiency. Virology 202: 621-630
    Tahara, S. M., Dietlin, T. A., Nelson, G. W., Stohlman, S. A., Manno, D. J. (1998) Mouse hepatitis virus nucleocapsid protein as a translational effector of viral mRNAs. Adv. Exp. Med. Biol. 440: 313-318
    Tan, Y. W., Fang, S., Fan, H., Lescar, J., Liu, D. X. (2006) Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acid Res. 34: 4816-4825
    Tan, Y. J., Lim, S. G., Hong, W. (2005) Characterization of viral proteins encoded by the SARS-coronavirus genome. Antivir. Res. 65: 69-78
    Thiel, V., Ivanov, K. A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weiβbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., Gorbalenya, A. E., Ziebuhr, J. (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84: 2305-2315
    Tijms, M. A., van der Meer, Y., and Snijder, E. J. (2002) Nuclear localization of non-structural protein 1 and nucleocapsid protein of equine arteritis virus. J. Gen. Virol. 83: 795-800
    Timani, K. A., Liao, Q., Ye, L., Zeng, Y., Liu, J., Zheng, Y., Yang, X., Lingbao, K., Gao, J., Zhu, Y. (2005) Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 114: 23-34
    Valegard, K., Murray, J. B., Stockley, P. G., Stonejhouse, N. J., Liljas, L. (1994) Crystal structure of an RNA bacteriophage coat protein operator complex. Nature 372: 623-626
    Van Den Born, E., Gultyaev, A. P., Snijder, E. J. (2004) Secondary structure and function of the 5'-proximal region of the equine arteritis virus RNA genome. RNA 10: 424-437
    Wang, H. Y., Lin, W., Dyck, J. A., Yeakley, J. M., Songyang, Z., Cantley, L. C., Fu, X. D. (1998) SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J. Cell Biol. 140: 737-750
    Wang, J. T., Sheng, W. H., Fang, C. T., Chen, T. Y., Wang, J. L., Chang, S. C., Yang, P. C. (2004) Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg. Infect. Dis. 10: 818-824
    Weidman, M. K., Sharma, R., Raychaudhuri, S., Kundu, P., Tsai, W., Dasgupta, A. (2003) The interaction of cytoplasmic RNA viruses with the nucleus. Virus Res. 95: 75-85
    White, T. C., Yi, Z., Hogue, B. G. (2007) Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites. Virus Res. 126: 139-148
    Wootton, S. K., Rowland, R. R., and Yoo, D. (2002) Phosphorylation of the porcine reproductive and respiratory syndrome virus nucleocapsid protein. J. Virol. 76: 10569-10576
    World Health Organization (2003a) Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. http://www.who.int/csr/sars/country/table2004_04_21/en/
    World Health Organization (2003b) First data on stability and resistance of SARS coronavirus compiled by members of WHO laboratory network. http://www.who.int/csr/sars/survival_2003_05_04/en/
    Wu, J. Y. and Maniatis, T. (1993) Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75: 1061-1070
    Wurm, T., Chen, H., Britton, P., Brooks, G., Hiscox, J. A. (2001) Localization to the nucleolus is a common feature of coronavirus nucleoproteins and the protein may disrupt host cell division. J. Virol. 75: 9345-9356
    Xiao, S. H. and Manley, J. L. (1997) Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11: 334-344
    Yang, Z., Xu, M., Yi, J. Q., Jia, W. D. (2005) Clinical characteristics and mechanism of liver damage in patients with severeacute respiratory syndrome. Hepatobiliary Pancreat. Dis. Int. 4: 60-63
    Yeakley, J. M., Tronchere, H., Olesen, J., Dyck, J. A., Wang, H. Y., Fu, X. D. (1999) Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. J. Cell Biol. 145: 447-455
    Yeh, C. T., Wong, S. W., Fung, Y. K., Ou, J. H. (1993) Cell cycle regulation of nuclear localization of hepatitis B virus core protein. Proc. Natl. Acad. Sci. U.S.A. 90:6459-6463
    You, J.-H., Dove, B. K., Enjuanes, L., DeDiego, M. L., Alvarez, E., Howell, G. (2005) Sub-cellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. J. Gen. Virol. 86: 3303-3310
    Yu, I. M., Gustafson, C. L., Diao, J., Burgner, J. W., II, Li, Z., Zhang, J., Chen, J. (2005) Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimmer through its C-terminal domain. J. Biol. Chem. 280:23280-23286
    Zahler, A. M., Lane, W. S., Stolk, J. A., and Roth, M. B. (1992) SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6, 837-847
    Zanotti, K. J., Lackey, P. E. Evans, G. L., Mihailescu, M. R. (2006) Thermodynamics of the fragile X mental retardation protein RGG box interactions with G quartet forming RNA. Biochemistry 45: 8319-8330
    Zhou, M. and Collisson, E. W. (2000) The amino and carboxyl domains of the infectious bronchitis virus nuleocapsid protein interact with 3’ genomic RNA. Virus Res. 67: 31-39
    Zhou, M., Williams, A. K., Chung, S. I., Wang, L., Collisson, E. W. (1996) Infectious bronchitis virus nucleocapsid protein binds RNA sequences in the 3’ terminus of the genome. Virology 217: 191-199
    Zuniga, S., Sola, I., Moreno, J. L., Sabells, P., Plana-Duran, J., Enjuanes, L. (2007) Coronavirus nucleocapsid protein is an RNA chaperone. Virology 357: 215-217

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE