研究生: |
彭翠儀 Peng,Tsui-Yi |
---|---|
論文名稱: |
Characterization of the severe acute respiratory syndrome coronavirus nucleocapsid (SARS-CoV N) protein 劇烈上呼吸道感染冠狀病毒鞘蛋白特性之探討 |
指導教授: |
李寬容
Lee,Kuan-Rong 譚婉玉 Tarn,Woan-Yuh |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 134 |
中文關鍵詞: | SARS 、coronavirus 、nucleocapsid 、RS-motif 、phosphorylation 、translation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
In early 2003, a novel coronavirus named severe acute respiratory syndrome coronavirus (SARS-CoV) caused a worldwide outbreak disease, SARS, displayed a high infectious ability. SARS Coronavirus nucleocapsid (N) protein is one of most abundant viral protein in infected cells, it is a phosphoproteins and plays multiple functions in viral synthesis and regulates host cells signal transduction. The N protein contains an arginine/serine (RS)-rich motif in its middle region, the role of this motif still need to be identified. In this study, we demonstrate that the SARS-CoV N protein is phosphorylated through RS-rich motif in vitro and in vivo. N protein could bind specific (viral) and non-specific (random) RNA, our results indicated that SRPK1 phosphorylation of the SR motif can reduces the multimerization ability of N protein. Moreover, SARS-CoV N protein impaires the translation via the RS motif, nevertheless, phosphorylation of the N protein can partly rescue the translation. Additionally, SARS-CoV N proteins localize to both the cytoplasm and the nucleolus, we observed that N protein translocates to cytoplasmic stress granules (SGs) when cells under stress, however, SRPK1 overexpression can inhibit N protein translocate to SGs. Taken together, SR motif regulates multiple functions of SARS-CoV N protein. Further, hypo- or hyper- phosphorlation of the N protein impaired its activity of these regulations, including multimerization and translation control.
Another RNA-binding protein, hnRNP Q, is one of the SMN RNA-associating proteins. We observed that the RGG box of hnRNP Q interacts with SMN RNA, and C-terminal domain of hnRNP Q1 mediates RNA binding and self association.
References
Abdul-Manan, N., O’Malley, S. M., Williams, K. R. (1996) Origins of binding specificity of the A1 heterogeneous nuclear ribonucleoprotein. Biochemistry 35: 3545-3554
Almazan, F., Galan, C., Enjuanes, L. (2004) The nucleoprotein is required for efficient coronavirus genome replication. J. Virol. 78: 12683-12688
Antson, A. A., Burns, J. E., Moroz, O. V., Scott, D. J., Sanders, C. M., Bronstein, I. B., Dodson, G. G., Wilson, K. S., and Maitland, N. J. (2000) Structure of the intact transactivation domain of the human papillomavirus E2 protein. Nature 403: 805-809
Antson, A. A. (2000) Single stranded RNA binding proteins. Curr. Opin. Struct. Biol. 10: 87-94
Baric, R. S., Nelson, G. W., Fleming, J. O., Deans, R. J., Keck, J. G., Casteel, N., Stohlman, S. A. (1988) Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J. Virol. 62: 4280-4287
Black, D. L. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 72: 291-336
Bost, A. G., Prentice, E., Denison, M. R. (2001) Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection. Virology 285: 21-29
Buhler, D., Raker, V., Luhrmann, R., Fischer, U. (1999) Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum. Mol. Genet. 8: 2351-2357
Campbell, L., Hunter, K. M., Mohaghegh, P., Tinsley, J. M., Brasch, M. A., Davies, K. E. (2000) Direct interaction of Smn with dp103, a putative RNA helicase: a role for Smn in transcription regulation? Hum. Mol. Genet. 9: 1093-1100
Cao, W., Jamison, S. F., Garcia-Blanco, M. A. (1997) Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro. RNA 3:1456-1467
Cartegni, L. and Krainer, A. R. (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30: 377-384
Cartegni, L. and Krainer, A. R. (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat. Struct. Biol. 10: 120-125
Cartegni, L., Chew, S. L., Krainer, A. R. (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3: 285-298
Cartegni, L., Hastings, M. L., Calarco, J. A., de Stanchina, E., Krainer, A. R. (2006) Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am. J. Hum. Genet. 78: 63-77
Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., Krainer, A. R. (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31: 3568-3571
Calvo, E., Escors, D., Lopez, J. A., Gonzalez, J. M., Alvarez, A., Arza, E., Enjuanes, L. (2005) Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells. J. Gene. Virol. 86: 2255-2267
Chang, C., Sue, S., Yu, T., Hsieh, C., Tsai, C., Chiang, Y., Lee, S., Hsiao, H., Wu, W., Chang, W., Lin, C., Huang, T. (2006) Modular organization of SARS coronavirus nucleocapsid protein. J. Biomed. Sci. 13: 59-72
Chang, R. Y. and Brian, D. A. (1996) cis requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication. J. Virol. 70: 2201-2207
Chang, R. Y., Hofmann, M. A., Sethna, P. B., Brian, D. A. (1994) A cis-acting function for the coronavirus leader in defective interfering RNA replication. J. Virol. 68: 8223-8231
Chang, C. K., Sue, S. C., Yu, T. H., Hsieh, C. M., Tsai, C. K., Chiang, Y. C., Lee, S. J., Hsiao, H. H., Wu. W. J., Chang, C. F., Huang, T. H. (2005) The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus-like structure. FEBS Lett. 579: 5663-5668
Charroux, B., Pellizzoni, L., Perkinson, R. A., Shevchenko, A., Mann, M., Dreyfuss, G. (1999) Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J. Cell Biol. 147: 1181-1194
Charroux, B., Pellizzoni, L., Perkinson, R. A., Yong, J., Shevchenko, A., Mann, M., Dreyfuss, G. (2000) Gemin4: A novel component of the SMN complex that is found is both gems and nucleoli. J. Cell Biol. 148: 1177-1186
Chen, C. Y., Chang, C. K., Chang, Y. W., Sue, S. C., Bai, H. I., Riang, L., Hsiao, C. D., Huang, T. H. (2007) Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. J. Mol. Biol. 368: 1075-1086
Chen, H., Gill, A., Dove, B. K.,, Emmett, S. R., Kemp, F. C., Ritchie, M. A., Dee, M., Hiscox, J. A. (2005) Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding using surface plasmin resonance. J. Virol. 79: 3097-3106
Chen, H., Wurm, T., Britton, P., Brooks, G., Hiscox, J. A. (2002) Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. J. Virol. 76: 5233-5250
Colwill, K., Feng, L. L., Yeakley, J. M., Gish, G. D., Caceres, J. F., Pawson, T., Fu, X. D. (1996) SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors. J. Biol. Chem. 271: 24569-24575
Compton, S. R., Barthold, S. W., Smith, A. L. (1993) The cellular and molecular pathogenesis of coronaviruses. Lab. Anim. Sci. 43: 15-28
Compton, J. R., Rogers, D. B., Holmes, K. V., Fertsch, D., Remenick, J., McGowan, J. J. (1987) In vitro replication of mouse hepatitis virus strain A59. J. Virol. 61: 1814-1820
Daub, H., Blencke, S., Habenberger, P., Kurtenbach, A., Dennenmoser, J., Wissing, J., Ullrich, A., Cotton, M. (2002) Identification of SRPK1 and SRPK2 as the major cellular protein kinase phosphorylating hepatitis B virus core protein. J. Virol. 76: 8124-8137.
Davies, H. A., Dourmashkin,R. R., and MacNaughton, R. (1981) Ribonucleoprotein of avian infectious bronchitis virus. J. Gen. Virol. 53:67-74
DeMaria, C. T. and Brewer, G. (1996) AUF1 binding affinity to AU-rich elements correlates with rapid mRNA degradation. J. Biol. Chem. 271: 12179-12184
Denison, M. R., Spaan, W. J. M., van der Meer, Y., Gibson, C. A., Sims, A. C., Prentice, E., Lu, S. T. (1999) The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis. J. Virol. 73: 6862-6871
Dove, B. K., You, J.-H., Reed, M. L., Emmett, S. R., Brooks, G., Hiscox, J. A. (2006) Changes in nucleolar architecture and protein profile during coronavirus infection. Cell. Microbiol. 8: 1147-1157
Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A.,Berger, A., Burguiere, A. M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J. C., Muller, S., Rickerts, V., Sturmer, M., Vieth, S., Klenk, H. D., Osterhaus, A. D., Schmitz, H., Doerr, H. W. (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348: 1967–1976
Duan, S. M., Zhao, X. S., Wen, R. F., Huang, J. J., Pi, G. H., Zhang, S. X., Han, J., Bi, S. L., Ruan, L., Dong, X. P; SARS Research Team (2003) Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci. 16: 246-255
Eickmann M, Becker S, Klenk HD, Doerr HW, Stadler K, Cendini S, Guidotti S, Masignani V, Scarselli M, Mora M, Donati C, Han JH, Song HC, Abrignani S, Covacci A, Rappuoli R (2003) Phylogeny of the SARS coronavirus. Science 302: 1504-1505
Elvira, G., Wasiak, S., Blandford, V., Tong, K. X., Serrano, A., Fan, X., del Rayo Sanchez-Carbente, M., Servant, F., Bell, A. W., Biosmenu, D., Lacaille, J. C., McPherson, P. S., DesGroseillers, L., Sossin, W. S. (2006) Characterization of an RNA granule from developing brain. Mol. Cell. Proteomics 5: 635-651
Escors, D., Ortego, J., Laude, H., and Enjuanes, L. (2001) The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J. Virol. 75: 1312-1324
Fan, C. K., Yieh, K. M., Peng, M. Y., Lin, J. C., Wang, N. C., Chang, F. Y. (2006) Clinical and laboratory features in the early stage of severe acute respiratory syndrome. J. Microbiol. Immunol. Infect. 39: 45-53
Fan, H., Ooi, A., Tan. Y. W., Wang, S., Fang, S., Liu, D. X., and Lescar, J. (2005) The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properities. Structure 13: 1859-1868
Fischer, U., Liu, Q., Dreyfuss, G. (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90: 1023-1029
Fouchier, R. A., Kuiken, T., Schutten, M., van Amerongen, G.,van Doornum, G. J., van den Hoogen, B. G., Peiris, M., Lim, W., Stohr, K., Osterhaus, A. D. (2003) Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423: 240
Friesen, W. J. and Freyfuss, G. (2000) Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J. Biol. Chem. 275: 26370-26375
Frugier, T., Nicole, S., Cifuentes-Diaz, C., Melki, J. (2002) The molecular bases of spinal muscular atrophy. Curr. Opin. Genet. Dev. 12: 294-298
Fu, X. D. (1993) Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365: 82-85
Fu, X. D. (1995) The superfamily of arginine/serine-rich splicing factors. RNA 1: 663-680
Gabanella, F., Carissimi, C., Usiello, A., Pellizzoni, L. (2005) The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum. Mol. Genet. 14: 3629-3642
Giesemann, T., Rathke-Hartlieb, S., Rothkegek, M., Bartsch, J. W., Buchmeier, S., Jjockusch, B. M., Jockusch, H. (1999) A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with smn in nuclear gems. J. Biol. Chem. 274: 37908-37914
Graveley, B. R. (2000) Sorting out the complexity of SR protein functions. RNA 6: 1197-1211
Gonzalez, J. M., Gomez-Puertas, P., Cavanagh, D., Grobalenya, A. E., Enjuanes, L. (2003) A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch. Virol. 148: 2207-2235
Gubitz, A. K., Feng, W., Dreyfuss, G. (2004) The SMN complex. Exp. Cell Res. 296: 51-56
Gui, J. F., Lane, W. S., Fu, X. D. (1994) A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369: 678-682
Harris, C. E., Boden, R. A., Astell, C. R. (1999) A novel heterogeneous nuclear ribonucleoprotein-like protein interacts with NS1 of the minute virus of mice. J. Virol. 73: 72-80
He, R., Dobie, F., Ballantine, M., Leeson, A., Li, Y., Bastien, N., Cutts, T., Andonov, A., Cao, J., Booth, T. F., Plummer, F. A., Tyler, S., Baker, L., Li, X. (2004) Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 316: 476-483
He, R., Leeson, A., Andonov, A., Li, Y., Bastien, N., Cao, J., Osiowy, C., Dobie, F., Cutts, T., Ballantine, M., Li, X. (2003) Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 311: 870-876
He, R., Leeson, A., Ballantine, M., Andonov, A., Baker, L., Dobie, F., Li, Y., Bastien, N., Feldmann, H., Strocher, U., Theriault, S., Cutts, T., Cao, J., Booth, T. F., Plummer, F. A., Tyler, S., and Li, X. (2004) Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res. 105: 121-125
Hiscox, J. A., Wurm, T. Wilson, L., Cavanagh, D. Britton, P., Brooks, G. (2001) The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J. Virol. 75: 506-512
Hiscox, J. A. (2002) Brief review: the nucleolus--a gatway to viral infection? Arch. Virol. 147: 1077-1089
Hiscox, J. A. (2003) The interaction of animal cytoplasmic RNA viruses with the nucleus to facilitate replication. Virus Res. 95: 13-22
Hresko, R. C. and Mueckler, M. (2000) A novel 68-kDa adipocyte protein phosphorylated on tyrosine in response t insulin and osmotic shock. J. Biol. Chem. 275: 18114-18120
Hresko, R. C. and Mueckler, M. (2002) Identification of pp68 as the tyrosine-phosphorylated form of SYNCRIP/NSAP1. A cytoplasmic RNA-binding protein. J. Biol. Chem. 277: 25233-25238
Huang, Q., Yu, L., Petros, A. M., Gunasekera, A., Liu, Z., Xu, N., Hajduk, P., Mack, J., Fesik, S. W., and Olejniczak, E. T. (2004a) Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry 43: 6059-6063.
Huang, Y., Yario, T. A, Steitz, J. A. (2004b) A molecular link between SR protein dephosphorylation and mRNA export. Proc. Natl. Acad. Sci. U. S. A. 101: 9666-9670
Hurst, K. R., Kuo, L., Koetzner, C. A., Ye, R., Hsue, B., Masters, P. S. (2005) A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J. Virol. 79: 13285-13297
Ivanov, K. I., Puustinen, P., Mertis, A., Saarma, M., Makinen, K. (2001) Phosphorylation down-regulates the RNA binding function of the coat protein of potato virus A. J. Biol. Chem. 276: 13530-13540
Ilkow, C. S., Mancinelli, V., Beatch, M. D., Hobman, T. C. (2008) The Rubella virus capsids protein interacts with Poly(A) binding protein and inhibits translation. J. Vriol. 82: 4284-4294
Jayaram, J., Youn, S., Collisson, E. W. (2005) The virion N protein of infectious bronchitis virus is more phosphorylated than the N protein from infected cell lysates. Virology 339: 127-135
Kanopka, A., Muhlemann, O., Petersen-Mahrt, S., Estmer, C., Ohrmalm, C., Akusjarvi, G. (1998) Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 393:185-187
Kashima, T., Rao, N., David, C. J., Manley, J. L. (2007) hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum. Mol. Genet. 16: 3149-3159
Kedersha, N. and Anderson, P. (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 30: 963-969
Kiledjian, M. and Dreyfuss, G. (1992) Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J. 11: 2655-2664
Kim, J. H., Hahm, B., Kim, Y. K., Choi, M., Jang, S. K. (2000) Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J. Mol. Biol. 298: 395-405
Kinnaird, J. H., Maitland, K., Walker, G. A., Wheatley, I., Thompson, F. J., Devaney, E. (2004) HRP-2, a heterogeneous nuclear ribonucleoprotein, is essential for embryogenesis and oogenesis in Caenorhabditis elegans. Exp. Cell Res. 298: 418-430.
Kohtz, J., Jamison, S. F., Will, C. L., Zuo, P., Luhrmann, R., Carcia-Blanco, M. A., and Manley, J. L. (1994) Protein-protein interactions and 5’-splice-site recognition in mammalian mRNA precursors. Nature 368: 119-124
Koizumi, J., Okamoto, Y., Onogi, H., Mayeda, A., Krainer, A. R., Hagiwara, M. (1999) The subcellular localization of SF2/ASF is regulated by direct interaction with SR protein kinases (SRPKs). J Biol Chem 274, 11125-11131
Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A. E., Humphrey, C. D., Shieh, W. J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., DeRisi, J., Yang, J. Y., Cox, N., Hughes, J. M., LeDuc, J. W., Bellini, W. J., Anderson, L. J. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348: 1953-1966
Lai, M. M. and Cavanagh, D. (1997) The molecular biology of coronaviruses. Adv. Virus Res. 48: 1-100
Lai, M. C., Teh, B. H., Tarn, W. Y. (1999) A human papillomavirus E2 transcriptional activator: the interactions with cellular splicing factors and potential function in pre-mRNA processing. J. Biol. Chem. 274: 11832-11841
Lai, M. C., Kuo, H. W., Chang, W. C., Tarn, W. Y. (2003) A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J. 22: 1359-1369
Landsman, D. (1992) RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Res. 20: 2861-2864
Laude, H. and Masters, P. S. (1995) The coronavirus nucleocapsid protein, In S. G. Siddell (ed.), The Coronaviridae. Plenum Press, New York, N.Y. p. 141-163.
Lau, Y. L. and Peiris, J. S. (2005) Pathogenesis of severe acute respiratory syndrome. Curr. Opin. Immunol. 17: 404-410
Law, L. M., Everitt, J. C., Beatch, M. D., Holmes, C. F., Hobman, T. C. (2003) Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J. Virol. 77: 1764-1771
Lee, C., Hodgins, D., Calvert, J. G., Welch, S. K., Jolie, R., Yoo, D. (2006) Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome viris nucleocapsid protein attenuate virus replication. Virology 346: 238-250
Lefebvre, S., Burglen, L., Reboullet, S., Clermont, O., Burlet, P., Viollet, L., Benichou, B., Cruaud, C., Millasseau, P., Zeviani, M., Le Paslier, D., Frezal, J., Cohen, D., Weissenbach, J., Munnich, A., Melki, J. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155-165
Leong, H. N., Earnest, A., Lim, H. H., Chin, C. F., Tan, C. S., Puhaindran, M. E., Tan, A. C., Chen, M. I., Leo, Y. S. (2006) SARS in Singapore--predictors of disease severity. Ann. Acad. Med. Singapore. 35: 326-331
Leung, P. C. and Ooi, E. E. (2003) SARS War: Combating the Disease.
Li, F. Q., Xiao, H., Tam, J. P., Liu, D. X. (2005) Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus. FEBS Lett. 579: 2387-2396
Li, T., Zhang, Y., Fu, L., Yu, C., Li, X., Li, Y., Zhang, X., Rong, Z., Wang, Y., Ning, H., Liang, R., Chen, W., Babiuk, L. A., Chang, Z. (2005) siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther. 12: 751-761
Liu, Q. and Dreyfuss, G. (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 15: 3555-3565
Liao, W. and Ou, J. H. (1995) Phosphorylation and nuclear localization of the hepatitis B virus core protein: significance of serine in the three repeated SPRRR motifs. J. Virol. 69: 1025-1029
Lorson, C. L., Androphy, E. J. (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum. Mol. Genet. 9: 259-265
Lorson, C. L., Hahnen, E., Androphy, E. J., Wirth, B. (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 96: 6307-6311
Luo, H., Chen, Q., Chen, J., Chen, K., Shen, X., and Jiang, H. (2005) The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett. 579: 2623-2628
Luo, H., Ye, F., Chen, K., Shen, X., and Jiang, H. (2005) SR-rich motif plays a pivotal role in recombinant SARS coronavirus nucleocapsid protein multimerization. Biochemistry 44: 15351-15358
Luo, H., Ye, F., Sun, T., Yue, L., Peng, S., Chen, J., Li, G., Du, Y., Xie, Y., Yang, Y., Shen, J., Wang, Y., Shen, X., Jiang, H. (2004) In vitro biochemical and thermodynamic characterization of nuclecapsid protein of SARS. Biophy. Chem. 112: 15-25
Marra, M. A., Jones, S. J. M., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S. N., Kattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M. McDonald, H., Montgomery, S. B., Pandoh, P. K., Petrescu, A. S., Robertson, A. G., Schein, J. E., Siddiqui, A., Smailus, D. E., Stott, J. M., Yang, G. S., Plummer, F., Ansonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T. F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G. A., Tyler, S., Vogrig, R., Ward. D., Watson, B., Brunham, R. C., Krajden, M., Petric, M., Skowronski, D. M., Upton, C., Roper, R. L. (2003) The genome sequence of the SARS-associated coronavirus. Science 300: 1399-1404
Mears, W. E. and Rice, S. A. (1996) The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation. J. Virol. 70: 7445-7453
Meister, G., Buhler, D., Laggerbauer, B., Zobawa, M., Lottspeich, F., Fischer, U. (2000) Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. Hum. Mol. Genet. 9: 1977-1986
Meister, G., Eggert, C., Fischer, U. (2002) SMN-mediated assembly of RNPs: a complex story. Trends. Cell Biol. 12: 472-478
Misteli, T., Caceres, J. F., Clement, J. Q., Krainer, A. R., Wilkinson, M. F., Spector, D. L. (1998) Serine phosphorylation of SR proteins is required for their recruitment to sites of translation in vivo. J. Cell Biol. 143: 297-307
Misteli, T. and Spector, D. L. (1998) The cellular organization of gene expression. Curr. Opin. Cell Biol. 10: 323-331
Mizutani, A., Fukuda, M., Ibata, K., Shiraishi, Y., Mikoshiba, K. (2000) SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms. J. Biol. Chem. 275: 9823-9831.
Monani, U. R., Coovert, D. D., Burghes, A. H. (2000) Animal models of spinal muscular atrophy. Hum. Mol. Genet. 9: 2451-2457.
Monani, U. R., Lorson, C. L., Parsons, D. W., Prior, T. W., Androphy, E. J., Burghes, A. H., McPherson, J. D. (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8: 1177-1183
Moraes, K. C. M., Quaresma, A. J. C., Maehnss, K., Kobarg, J. (2002) Identification and characterization of proteins that selectively interact with isoforms of the mRNA binding protein AUF1 (hnRNP D). J. Biol. Chem. 384: 25-37.
Mourelatos, Z., Abel, L., Yong, J., Kataoka, N., Dreyfuss, G. (2001) SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J. 20: 5443-5452
Nagai, K. (1996) RNA-protein complexes. Curr. Opin. Struct. Biol. 6: 53-61
Narayana, K., Maeda, A., Maeda, J., and Makina, S. (2001) Characterization of the coronavirus M protein and nuclocapsid interaction in infected cells. J. Virol. 74: 8127-8134
Nelson, G. W., Stohlman, S. A., and Tahara, S. M. (2000) High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. J. Gen. Virol. 81: 181-188
Neubauer, G., King, A., Rappsilber, J., Calvio, C., Watson, M., Ajuh, P., Sleeman, J., Lamond, A., Mann, M. (1998) Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat. Genet. 20: 46-50
Ning, Q., Lakatoo, S., Liu, M. F., Yang, W. M., Wang, Z. M., Phillips, M. J., Levy, G. A. (2003) Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4 alpha. J. Biol. Chem. 278: 15541-15549
Ning, Q., Liu, M. F., Kongkham, P. Lai, M. M. C., Marsden, P. A., Tseng, J., Pereira, B., Belyavskyi, M., Leibowitz, J., Phillips, M. J., Levy, G. (1999) The nucleocapsid protein of nurine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. J. Biol. Chem. 274: 9930-9936
Parker, M. M. and Masters, P. S. (1990) Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology 179: 463-468
Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng T. K., Yuen K. Y. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 1319–1325
Pellizzoni, L., Charroux, B., Dreyfuss, G. (1999) SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc. Natl Acad. Sci. USA 96: 11167-11172
Pellizzoni, L., Charroux, B., Rappsilber, J., Mann, M. Dreyfuss, G. (2001) A functional interaction between the survival motor neuron complex and RNA polymerase II. J. Cell Biol. 152: 75-85
Pellizzoni, L., Kataoka, N., Charroux, B., Dreyfuss, G. (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95: 615-624
Pinol-Roma, S. and Dreyfuss, G. (1992) Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355: 891-893
Tan, Y. J., Lim S. G., Hong W. (2006) Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Research 72: 78-88
Osborne, J. C. and Elliott, R. M. (2000) RNA binding properties of bunyamwera virus nucleocapsid protein and selective binding to an element in the 5’ terminus of the negative-sense S segment. J. Virol. 74: 9946-9952
Oubridge, C., Ito, N., Evans, P. R., Teo, C. H., and Nagai, K. (1994) Crystal structure at 1.92 A resolution of the RNA binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372: 432-438
Parker, M. M. and Masters, P. S. (1990) Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Viology 179: 463-468
Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng, T. K., Yuen, K. Y.; SARS study group. (2003a) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 1319-1325
Peiris, J. S., Yuen, K. Y., Osterhaus, A. D., Stohr, K. (2003b) The severe acute respiratory syndrome. N. Engl. J. Med. 349: 2431-2441
Perlman, S. and Dandekar, A. A. (2005) Immunopathogenesis of coronavirus infections: implications for SARS. Nature reviews immunology 5: 917
Prasad, J., Colwill, K., Pawson, T., Manley, J. L. (1999) The protein kinase Clk/Sty directly modulates SR protein activity: Both hyper- and hypophosphorylation inhibit splicing. Mol. Cell Biol. 19:6991-7000
Raaben, M., Groot Koerkamp, M. J., Rottier, P. J., Haan, C. A. (2007) Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cell Microbiol. 9: 2218-2229
Rabenau, H. F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W., Doerr, H. W. (2005) Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol. 194: 1-6
Reed, M. L., Dove, B. K., Jackson, R. M., Collins, R., Brooks, G., Hiscox, J. A. (2006) Delineation and modeling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic. 7: 833-848
Risco, C., Anton, M. I., Enjuanes, L., Carrascosa, J. L. (1996) The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J. Virol. 70: 4773-4777
Roscigno, R. F. and Garcia-Blanco, M. A. (1995) SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA 1:692-706
Rossoll, W., Jablonka, S., Andreassi, C., Kroning, A. K., Karle, K., Monani, U. R., Sendtner, M. (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. J. Cell Biol. 163: 801-812
Rossoll, W., Kroning, A. K., Ohndorf, U. M., Steegborn, C., Jablonka, S., Sendtner, M. (2002) Specific interaction of SMN, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for SMN in RNA processing in motor axons? Hum. Mol. Genet. 11: 93-105
Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Peñaranda, S., Bankamp, B., Maher, K., Chen, M. H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J. L., Chen, Q., Wang, D., Erdman, D. D., Peret, T. C., Burns, C., Ksiazek, T. G., Rollin, P. E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Günther, S., Osterhaus, A. D., Drosten, C., Pallansch, M. A., Anderson, L. J., Bellini, W. J. (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 1394-1399
Rowland, R. R. R., Chauhan, V., Fang, Y., Pekosz, A., Kerrigan, M., Burton, M. D. (2005) Interacellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in Vero cells. J. Virol. 79: 11507-11512
Rowland, R. R. R., Kerwin, R., Kuckleburg, C., Sperlich, A., Benfield, D. A. (1999) The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Res. 64: 1-12
Rowland, R. R. R., and Yoo, D. (2003) Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein: a simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Res. 95: 23-33
Saikatendu, K. S., Joseph, J. S., Subramanian, V., Neuman, B. W., Buchmeier, M. J., Stevens, R. C., Kuhn, P. (2007) Ribonucleocapsid formation of SARS-CoV through molecular action of the N-terminal domain of N protein. J. Virol. 81: 3913-3921
Sanford, J. R. and Bruzik, J. P. (1999) Developmental regulation of SR protein hosphorylation and activity. Genes Dev. 13:1513-1518
Saif, L. J. (1996) Mucosal immunity: an overview and studies of enteric and respiratory coronavirus infections in a swine model of enteric disease. Vet. Immunol. Immunopathol. 54: 163-169
Singh, N. N., Androphy, E. J., Singh, R. N. (2004) The regulation and regulatory activities of alternative splicing of the SMN gene. Crit. Rev. Eukaryot. Gene Expr. 14: 271-285
Schelle, B., Karl, N., Ludewig, B., Siddell, S. G., Thiel, V. (2005) Selective replication of coronavirus genomes that express nucleocapsid protein. J. Virol. 79: 6620-6630
Scott, A. T. and Juliio, A. A. (2005) Dephosphorylation shows SR protein the way out. Molecular cell 20: 499-501
Spencer, K. A., Dee, M., Britton, P., and Hiscox, J. A. (2007) Role of phosphorylation clusters in the biology of the coronavirus infectious bronchitis virus nucleocapsid protein. Viology 370: 373-381
Stohlman, S. A., Baric, R. S., Nelson, G. N., Soe, L. H., Welter, L. M., Deans, R. J. (1988) Specific interaction between coronavirus leader RNA and nucleocapsid protein. J. Virol. 62: 4288-4295
Stohlman, S. A., Fleming, J. O., Patton, C. D., Lai, M. M. C. (1983) Synthesis and subcellular localization of the murine coronavirus nucleocapsid protein. Viology 130: 527-532
Stojdl, D. F. and Bell, J. C. (1999) SR protein kinases: the splice of life. Biochem. Cell Biol. 77: 293-298
Sturman, L. S., Holmes, K. V., and Behnke, J. (1980) Isolation of coronavirus envelope glycoproteins and interaction with the nucleocapsid. J. Virol. 33: 449-462
Surjit, M., Kumar, R., Mishra, R. N., Reddy, M. K., Chow, V. T., Lal, S. K. (2005) The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylate and localizes in the cytoplasm by 14-3-3-meciated translocation. J. Virol. 79: 11476-11486
Surjit, M., Liu, B., Kumar, P., Chow, V. T., Lal, S. K. (2004) The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochem. Biophys. Res. Commun. 317: 1030-1036
Surjit, M., Liu, B., Jameel, S., Chow, V. T., Lal, S. K. (2004b) The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochem J. 383: 13-18
Tacke, R., Chen, Y., Manley, J. L. (1997) Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA 94:1148-1153
Tahara, S. M., Dietlin, T. A., Bergmann, C. C., Nelson, G. W., Kyuwa, S., Anthony, R. P., Stohlman, S. A. (1994) Coronavirus translation regulation: leader affects mRNA efficiency. Virology 202: 621-630
Tahara, S. M., Dietlin, T. A., Nelson, G. W., Stohlman, S. A., Manno, D. J. (1998) Mouse hepatitis virus nucleocapsid protein as a translational effector of viral mRNAs. Adv. Exp. Med. Biol. 440: 313-318
Tan, Y. W., Fang, S., Fan, H., Lescar, J., Liu, D. X. (2006) Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acid Res. 34: 4816-4825
Tan, Y. J., Lim, S. G., Hong, W. (2005) Characterization of viral proteins encoded by the SARS-coronavirus genome. Antivir. Res. 65: 69-78
Thiel, V., Ivanov, K. A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weiβbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., Gorbalenya, A. E., Ziebuhr, J. (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84: 2305-2315
Tijms, M. A., van der Meer, Y., and Snijder, E. J. (2002) Nuclear localization of non-structural protein 1 and nucleocapsid protein of equine arteritis virus. J. Gen. Virol. 83: 795-800
Timani, K. A., Liao, Q., Ye, L., Zeng, Y., Liu, J., Zheng, Y., Yang, X., Lingbao, K., Gao, J., Zhu, Y. (2005) Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 114: 23-34
Valegard, K., Murray, J. B., Stockley, P. G., Stonejhouse, N. J., Liljas, L. (1994) Crystal structure of an RNA bacteriophage coat protein operator complex. Nature 372: 623-626
Van Den Born, E., Gultyaev, A. P., Snijder, E. J. (2004) Secondary structure and function of the 5'-proximal region of the equine arteritis virus RNA genome. RNA 10: 424-437
Wang, H. Y., Lin, W., Dyck, J. A., Yeakley, J. M., Songyang, Z., Cantley, L. C., Fu, X. D. (1998) SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J. Cell Biol. 140: 737-750
Wang, J. T., Sheng, W. H., Fang, C. T., Chen, T. Y., Wang, J. L., Chang, S. C., Yang, P. C. (2004) Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg. Infect. Dis. 10: 818-824
Weidman, M. K., Sharma, R., Raychaudhuri, S., Kundu, P., Tsai, W., Dasgupta, A. (2003) The interaction of cytoplasmic RNA viruses with the nucleus. Virus Res. 95: 75-85
White, T. C., Yi, Z., Hogue, B. G. (2007) Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites. Virus Res. 126: 139-148
Wootton, S. K., Rowland, R. R., and Yoo, D. (2002) Phosphorylation of the porcine reproductive and respiratory syndrome virus nucleocapsid protein. J. Virol. 76: 10569-10576
World Health Organization (2003a) Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. http://www.who.int/csr/sars/country/table2004_04_21/en/
World Health Organization (2003b) First data on stability and resistance of SARS coronavirus compiled by members of WHO laboratory network. http://www.who.int/csr/sars/survival_2003_05_04/en/
Wu, J. Y. and Maniatis, T. (1993) Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75: 1061-1070
Wurm, T., Chen, H., Britton, P., Brooks, G., Hiscox, J. A. (2001) Localization to the nucleolus is a common feature of coronavirus nucleoproteins and the protein may disrupt host cell division. J. Virol. 75: 9345-9356
Xiao, S. H. and Manley, J. L. (1997) Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11: 334-344
Yang, Z., Xu, M., Yi, J. Q., Jia, W. D. (2005) Clinical characteristics and mechanism of liver damage in patients with severeacute respiratory syndrome. Hepatobiliary Pancreat. Dis. Int. 4: 60-63
Yeakley, J. M., Tronchere, H., Olesen, J., Dyck, J. A., Wang, H. Y., Fu, X. D. (1999) Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. J. Cell Biol. 145: 447-455
Yeh, C. T., Wong, S. W., Fung, Y. K., Ou, J. H. (1993) Cell cycle regulation of nuclear localization of hepatitis B virus core protein. Proc. Natl. Acad. Sci. U.S.A. 90:6459-6463
You, J.-H., Dove, B. K., Enjuanes, L., DeDiego, M. L., Alvarez, E., Howell, G. (2005) Sub-cellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. J. Gen. Virol. 86: 3303-3310
Yu, I. M., Gustafson, C. L., Diao, J., Burgner, J. W., II, Li, Z., Zhang, J., Chen, J. (2005) Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimmer through its C-terminal domain. J. Biol. Chem. 280:23280-23286
Zahler, A. M., Lane, W. S., Stolk, J. A., and Roth, M. B. (1992) SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6, 837-847
Zanotti, K. J., Lackey, P. E. Evans, G. L., Mihailescu, M. R. (2006) Thermodynamics of the fragile X mental retardation protein RGG box interactions with G quartet forming RNA. Biochemistry 45: 8319-8330
Zhou, M. and Collisson, E. W. (2000) The amino and carboxyl domains of the infectious bronchitis virus nuleocapsid protein interact with 3’ genomic RNA. Virus Res. 67: 31-39
Zhou, M., Williams, A. K., Chung, S. I., Wang, L., Collisson, E. W. (1996) Infectious bronchitis virus nucleocapsid protein binds RNA sequences in the 3’ terminus of the genome. Virology 217: 191-199
Zuniga, S., Sola, I., Moreno, J. L., Sabells, P., Plana-Duran, J., Enjuanes, L. (2007) Coronavirus nucleocapsid protein is an RNA chaperone. Virology 357: 215-217